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ABSTRACT

The amplitude and phase variations of high frequency signals
transmitted through the ionosphere from Earth Satellite S-66 were
recorded and processed to allow intercomparison of seven different
diffraction patterns obtained from one satellite pass. The amplitude
patterns are on two harmonically related frequencies, 20 and 40 MHz,
which are measured at each of two locations separated by one kilometer.
The phase patterns are phase difference patterns between the two
frequencies as measured at one location or between ends of the base~
line using the same frequency.

To develop theoretical phase-modulating screen models and
obtain relationships between the patterns as they propagated behind the
screen, the diffraction theory was used. The weak, one-dimensional,
phase-modulating screen was extended in complexity to include two-
dimensional, noﬁ—weak, thick, and discrete blob screens. The screens
were assumed repetitive in structure; that is, their phase modulations
could be represented by a finite number of Fourier terms which were
functions of distance along the screen measured in two orthogonal
directions. The common limiting assumptions of gaussian spatial
distributions and the observer being either in the far field or the first
Fresnel zone were not used. Patterns which developed behind each
screen model were determined as functions of modulation intensity,
scale size, distance to satellite and screen, and zenith angle.

The measured diffraction patterns were projected for comparison
and sampled. Their autocorrelation functions and Fourier spectra were
calculated using two harmonic analysis programs written for this

investigation. Distribution of these spectra for the various patterns was



explained in terms of theoretical screen characteristics and geometrical
considerations of the satellites, screen, and receiver. Data analysis
procedures included transferring the various measured patterns back to
the height of the screen by use of appropriate propagation factors. The
height was incremented such as to minimize differences between trans-
ferred patterns in a least squares sense.

It was concluded that the total peak phase modulation is usually
more than one radian; this large value is justified by showing that
thick two-dimensional phase-modulating screens are not as effective
in producing large scintillation indexes are a.c. to d.c. ratios. Also,
the larger scale sizes containing most of the phase variation do not
develop in the amplitude patterns. It is shown by theoretical analysis
and measured data that scale size variation deduced from measurement
of diffraction patterns depends on both the radiating source and the par-
ticular pattern measured. Radio stars and high satellites tend to give
larger scale sizes than do satellites close to the diffraction screen.
Also, phase difference patterns between harmonically related
frequencies tend to give larger scale sizes than do the amplitude patterns
for the same satellite. Phase interferometer patterns are shown to
be very sensitive to baseline lengths. The mean scale size obtained for
the amplitude patterns was LF = 2.16 km, equivalent to a correlation
length, LC’ of 0.34 km. Phase difference patterns between harmonically
related frequencies yielded a scale size, LF = 7.0 km, equivalent to a
correlation length of 1.1 km.

In comparing results with those of other investigations,
explanations are given for several observed phenomena. These

phenomena include the difference in pattern correlation functions when

ii



measurements are made on radiation at two or more frequencies, the
lack of expected dependence of scintillation index on wavelength, and the

existence of either, but not both, phase or amplitude diffraction patterns

during a track.

iii



CHAPTER 1 INTRODUCTION

1.1 General Review

Scintillations in the amplitude and phase of the signals from
radio stars and Earth satellites have been observed for a number of
years at points scattered throughout the world, These fluctuatioms
are imposed on the radio waves as they pass through the irregular
structure of the ionosphere, Because of the relative ease with which
they are measured, most of the extensive literature relating to the
radio star and satellite scintillations has dealt only with the ampli-
tude fluctuations. The generally accepted model for producing the
scintillation phenomenon is a diffracting layer of irregular electron
concentration located in the ionosphere. The irregularity in the
refractive index of this layer acts as a thin lems for focusing and
defocusing the emerging wave so as to produce an irregular pattern as
observed by a receiver some distance below the screen. To relate these
fluctuations which are measured on the ground to the medium where they
are produced, it is necessary to determine how the signal varies as it
propagates from the region of the screen where the wave is modulated.

Increasing interest in the effect of these ionospheric variationg
on electromagnetic wave propagation and diffraction or scattering has
induced considerable work in recent years. Three different theoretical
approaches have been used for handling the problem. A number of inves-
tigétoxs have treated the problem such that the wave at the receiving
antenna is regarded as the sum of the original wave and a number of com-

ponents that have been scattered from each volume of the irregular



ionosphere. This method is direct but is difficult to apply when
scattering is not weak or for an arbitrary distribution of scatterers.
In attempting to overcome the latter deficiency, the properties of the
irregular medium are usually described statistically in terms of some
assumed form of correlation function. Also, most of this work has been
a blend of statistical approximations using the electromagnetic wave
theory, since an exact analytical solution of the general propagation
and scattering problems is not feasible, even if the physical behavior
of the regions along the ray path is well-defined. For this reason,
stress has been on the statistics, and physics enters only for consid-
erations of the nature of the turbulence and for application of Maxwell's
equations. Unfortunately, once a statistical model amenable to the
necessary operétions has been selected to describe the medium at the
screen, the possibility of a more general solution has been removed.

A second method used for handling the scintillation problem 1is
ray optics. This method is not very rigorous since ray optics only
apply when the size of the anomalies is much larger than a wavelength
apd thus very large compared to the first Fresnel zone measured at the
poink of pattern observation. This method has been used when strong
scaftering exists or a single large anomaly is being considered. It
does not work well when the modulating region contains a number of scale
sizes, some of which are only an order of magnitude 1arget than the
wavelength,

The third approach to the solution of the scintillation problem
is the diffraction theory. The properties of the wave front on emerging

from the region of the anomalies are related to the properties of those



anomalies. The propagation thrpugh the space beyond the region of the
anomalies is treated as a diffraction probiem. To model the changes
given the wavefront as it passes through the region of tﬁe anomalies,

the concept of an equivalent thin screen is used. The screen is assumed
to be very thin in the direction of propagation and to modﬁlate the wave
incident upon it by an amount which is a function of position across the
screen.

Booker and Clemmow (1950)[1] first showed the relationships exist-
ing between an electric field and an angular spectrum of plane waves;
this was followed by an application of the principle to ionospheric
diffraction problems by Booker,‘Ratcliffe, and Shinn (1950)[2]. It was
then shown by Hewish (1951, 1952)[3]’[4] how the field produced by an
individual Fourier component vaired with distance beyond the screen.

This work was followed by that of Bowhill (1960, 1961)[5]’[6], DeBarber
and Ross (1963)[7], Yeh and Swenson (1964)[8], and many others. Unfor-
tunately, in formulating a model for the spatial distributions, most
investigators assume that the correlation function of the dielectric con-
stant or of the electron density is gaussian with an elliptical symme-

tryl4]’[10]. The assumption of gaussian shape 1s used for convenience

and has no physical basis[B]; however, it does influence the solution of
the problem. The ergodic assumptions often made are of doubtful validity
unless the amount of data available is extensive. This results because
the properties of the measured patterns change with positibn of the radi-
ating source and time of the observation., The averaging effects of the

models containing the ergodic assumptions obscure the individual

character of the patterns.



In most previous investigations, the intensity of the phase
modulation, ¢O » and the correlation distance, r0 . are the two
independent parameters specified for the single gaussian function used
to describe the phase-modulating screen. It is asserted that when ¢0
is less than one radian, the scale sizes of the diffraction patterns in
the radiation at wavelength, XA , are equal to those of the screen at
those distances, Z , where lZ/r02>>1. However, when ¢0 is larger
than one radian, the scale sizes of the patterns measured at large dis-
tances from the screen should be smaller than those at the screen.

The approach taken by these past investigations has resulted in
the conclusions that: (1) the gmount of modulation and scintillation is
proportional to wavelength; (2) the phase pattern has the same correla-
tion as the screen; (3) the amplitude pattern develops with a linear
dependence on the distance from the screen until it reaches a maximum
beyond which it remains constant; and (4) the scale size in the amplitude
pattern depends on the amount of modulation.

The experimental results of these prior investigations indicate
that the ionospheric irregularities which produce the observed diffrac-
tion patterns may occur at heights of from 250 km to 600 km, although the
thickness of the region containing the irregularities is sometimes less
than 50 km. The scale size of the anomalies which were defined by the
correlation distance for the gaussian function, r0 , or the separation
of successive maxima or minima, L , were found to vary from 2 km to 10
km. These anomalies were said to be elongated by a ratio of 5 to 1, or

greater, with the larger axis along the line of the magnetic field.



For those experiments where the records of the diffraction pat-
terns were analyzed to determine their harmonic content, long samples
were taken together, and autocorrelation functions and their cosine
transforms were used to obtain the power spectral densities. This method
is one best applied to random processes; because of its smoothing char-
acteristic, it tends to fill in for those harmonics possessing little
energy. Nevertheless, the spectra obtained were somewhat discrete and
not continuous as would be required by the theory using the assumed dis-
tributions. Examples of other observed phenomena unexplained by the
theory of the earlier experiments are: the absence of either the phase
or amplitude pattern when the other was present, as observed by DeBarber
(1962)[15], and the inversion effect, where the longer wavelength trans-
missions contaiﬁed less scintillations, as observed by Briggs (1966)[111;

There are reasons why a description of the irregular ionosphere
has not been obtained by use of a more direct approach. To obtain a
unique set of ionospheric characteristics from the interpretation of the
diffraction pattérns measured on the ground is most difficult. One
approach would be to extrapolate backwards:a complete surface map of the
measured patterns to yield a corresponding map at the diffracting region.
This is prevented by the practical limitations on the amount of data
which can be gathered on the ground. Some form of modeling is thus em-
ployed to produce patterns similar to those which are measured. Among
the most frequently used models is that of the thin modulating screen.
The wave emerging below the screen has a complex field pattern which may

show variations in both its amplitude and phase.



Another approach would be to synthesize, in’depth, the medium
which would convert the known spherical wavefront into the observed field
pattern. This is a most difficult problem which may not have a unique
solution. However, the physics of the ionosphere in the altitude range
where the effects are incurred, does provide some insight as to the
screen model to use. The causative process is refractive rather than
absorptive; the changes in the emerging wavefront are then in phase
rather than in amplitude, and a phase-modulating screen is generally

employed for modeling.

1.2 Stétement of the Problem

The previous section discussed the complexity and difficulty of
obtaining a rigorous solution for the nature, position, and extent of the
ionospheric region responsible for the fluctuations imposed on radiation
from radio stars and Earth Satellites. To circumvent these difficulties,
modeling was used to represent the significant characteristics of the
phase-modulating regions. The ergodic assumptions which have been made
for the majority of the studies of F region irregularities were made
principally for mathematical convenience. Their use has resulted in
unexplained behavior when comparisons are made between the diffraction
patterns which develop behind the theoretical screens and the real pat-
terns measured at the ground.

A new approach, to obtain better models for representing the re-
gion of the ionosphere which produces the scintillation on the radio
signals passing through it, is dictated by the limitations of the exist-

ing techniques. This new approach should be flexible enough to



synthesize variable models that will correspond with the measurements
made on real-phase and amplitude diffraction patterns. Ome way to
achieve more flexibility in the models is to assemble them from a sum

of weakly modulating, two-dimensional, spatial Fourier series terms.

1.3 Specific Statement of Problem

It is the objective of this investigation to relate the properties
of the diffraction'patterns measured on the ground to a realistic model
of the irregular ionosphere. To accomplish this, scintillation measure-
ments will be made at spaced receiver locations at two satellite fre-
quencies simultaneously. To obtain the phase and amplitude diffraction
patterns, a receiving system will be designed and will record the data
required for analysis, Where possible, the methods used for data analy-
sis will avoid making any unnecessary assumptions. A series of theore-
tical ionospheric model studies will be made to determine relationships
between the irregularities and the diffraction patterns they produce.
The experimental results will be compared with the theoretical models

to make better estimates for the irregular ionosphere.



CHAPTER 2 PHASE AND AMPLITUDE PATTERNS PRODUCED BY PHASE-MODULATING
SCREENS

This section develops expressions to represent the phase and
amplitude scintillation patterns which develop behind a phase-modulating
screen on which H.F., radiation is incident. For this investigation, the
radiation emanates from an artificial Earth satellite located a finite
distance, Z° , above the regién of the ionosphere where the phase-modu-
lating anomalies are situated. The receiver at the Earth's surface,
which measures the pattern is located a distance, Z , from the same
screen of phase—modulating anomalies.

Thé first screen examined is the weka, single-frequency, one-—
dimensionsla, continuous screen., This has been investigated pre-

(31,041,

viously ;. however, the known results are presented here for com-
pleteness and for revealing certain characteristics essential for devel-
oping the later models. The way in which these patterns propagate behind
the screen is shown to be a function of the scale size of the screen and
the distance of the source from the screen. The complexity of this
simple screen is increased as the screen is made non;weak, two-dimen-
sional, thick, and finally to consist of an array of discrete blobs,

For each screen model, the appropriate phase and amplitude pat-
terns which develop behind the screen are obtained. The discrete blob
screen, which reduces te a two-dimensional,cosinusoidal screen for a spe-
cial case, is shown to have a realizable correlation function. 1In all
cases investigated, it is shown that the resulting diffraction patterns

may be represented by a small number of significant Fourier components.

The effects of the satellite-screen geometry, on the particular patterns
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measured as part of the experiment, are discussed. The amount of elec-
tron density variation required to produce various levels of phase modu-
lation is also determined.

2.1 The Weak One-Dimensional Screen Containing a Single Spatial

Frequency

The first screen investigated is infinitely thin in the plane
Z = 0 and has a weak phase variation in one direction, X0 , the phase
modulation function being a cosinusoidal function of XO . The geometry
for the satellite, screen, and receiver is shown in Figure 1. To obtain
the patterns, the spatial Fourier transform 1s used, first to find the
angular spectrum of plane waves that represents the electric field as it
emerges ffom the bottom of the phése—modulating screen. A second trans-
form is then acquired of the angular spectrum to find the complex field
beyond the screen as a function of the cartesian coordinates—— X s Z o
The angular spectrums are given in terms of S where 8 1s the sine of
the angle 0O , the angle between the incident radiation at the screen
and a diffracted component.

In this analysis, normal incidence has been used because the small
change iﬁ weighted distance to the observer, which results when the screen
is tilted, has little effect on the coefficients for pattern propagation.
The spatial Fourier transforms relating the angular spectrums of plane
waves and the one-dimensional variation in the complex electric field,

E , are then:

o —jZﬂSXO
P(S) =/E(XO, 0) e A dXO (2-1)

-0
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Figure 1. Satellite-Receiver Geometry
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" jZnSXO
1 A
E(XO, 0) =3 P(S) e das (2-2)

The limits for the Fourier transform here are + «» for the variable S .

It follows that, when |S| >1, cos 6= (1~ 82)1/2 will be imaginary.

The significance of this behavior is evident when the expression for

finding the complex field, a distance, X , 2 , is examined. '

j2nSX  j2uCZ

E(X, Z) =~Al—_/ PGS e * e M as (2-3)

When S is larger than one, the angular spectrum component has a
spatial period less than A din the X direction, but it is attenunated
in the Z direction. A series of these components will comprise what
is known as an evanescent wave; these waves are rapidly attennated as
they leave the screen so as not to contribute to a pattern some distance
behind the screen,

For the weak scattering considered here, only the first two terms

in the binomial expansion for C are used; that is:

cz1~—§~sz (2-4)
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This is equivalent to a Fresnel reglon representation of the field when
weak scattering exists. As will be shown, when the satellite is at a
finite distance (1,000 km), only small anomalies place the receiver in
the far field.

It then follows that:

207 o j271XS --j1rZS2

P(S) e Ao Aogs (2-5)

E(X, Z) == e

> |
>

-—00

where the phase shift is made positive with increasing Z . Because
the satellite producing the :adiation is a finite disténce from the
screen, the wavefront incident on the screen is spherical and has a
phase dependent on the displacement from origin, iO . If the phase-
modulating screen has a modulation function, ¢ (XO) , the angular

spectrum at the screen becomes:

X, -j2msX )
1%’—'-2— ~ o)) T N
P(S) = e e e e dX0 (2-6)
For the weak cosinusoidal screen:
3¢, (X))
e 00 414 ¢y cos 2nX, (2-7)
L

where L 1is the scale size of the screen.
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When the cosine function is replaced by its exponential form,

i21Z° 16 (JZ"XO - jz“xo>
P(S) = e )“f l+—2'(l L L

+ e
=00

2
j<1rX0 - 21rSX0)
e \AZ A X

0

(2-8)

Sneddon (1951)[12] gives the solution for complex integrals of this form.

Upon completing the integration of 2-8,

Janz m 1, | - AME(E - _1_)2
P(8) = e A ViAZ” + —EQ' e AL
(2-9)
- ImMZ7E + ;)2
+ e A L
In 1ater developments, additional terms of the form cos EEEEQ
L

will be used to represent the screen. The ‘1/L terms in 2-9 then
become n/L .

To obtain the complex field at X , 2Z , the P(S) of 2-9 is
substituted into 2-5 and the integration is performed, After collecting

terms, the result may be written as:

2 L

E(X, Z) = /?[1 + ¢, sin 1AFZ cos 21FX
L

(2-10)

j2n(Z + Z27) j'er2
A e)\(Z + Z°)

+ 3¢, cos ﬂA%%_cos ZﬁFX e
L
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where F =

The two exponentials represent the phase of the undiffracted wave
at point X , relative to which the diffracted wave field can bé
normalized.

It is noted that thg'oneedimensional, weak phase, modulating
screen produces a diffraction pattern beyond the screen which has both
an in-phase and quadrature component relative to the undiffracted wave.
The in-phase component has an amplitude which varies as a sine function
of the distance from the screen, Z , while the quadrature component
varies as a cosine function of the same distance. This means tﬁat the
amplitude pattern does not fully develop until some distance beyond the
screen. Also, if the screen is very thin, there are values of Z for
which the phase pattern vanishes.

Ihat the source is at a finite distance, 2° , from the screen
changes the pattern of a one-dimensional screen in three fashions. First,
the size of the pattern has been enlarged by a factor, (Z + Z7)/2° ,
which is the factor of ray optical projection methods. Second, the dis-
tance to the development of the in~phase pattern has been increased by
the same expansion factor, (Z + Z”)/Z” . Last, the amplitude of all
terms has been decreased by this expansion factor to the minus one-half
power as compared to the case where the source is at « and normaliza-
tion is to the same incident power flux upon the screen. The non-parallel
rays, which are scattered and then combine to produce the pattern, con-

tinue to diverge, reducing the magnitude of the pattern at a point beyond
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fhe screen. When the satellite approaches close to the screen, the in-
phase pattern does not develop and the scale size of the quadrature pat-
tern is much eﬁlarged.

The phase, ¢ , and amplitude, A , of the diffraction pattern
can be expressed as functions of the in-phase and quadrature components:

% cos mAFZ cos 2mFX
2 L

Tan ¢ = L : v (2-11)
1. + ¢4 sin TAFZ cos 2wFX
2 L
L
_ _\1/2
A= /F (1. + 2¢, sin mAFZ cos 25FX (2-12)
12 L

Since 4)0 is assumed small, ¢ is also small; then Tan y = ¢ :

[T ¢0 cos mAFZ cos 2rFX (2-13)

LZ L

If only the first two terms of the binomial expansion of 2-12 are

retained, the function for the amplitude pattern becomes:

A= /F (1. + ¢, sin mFZ cos 21r1-?X> (2-14)
2 L

When ¢0 . is small and the patterns contain only one spatial
frequency, the amplitude pattern will have its first maximum for
Z = L2/2kf . For a particular scale size, L , the distance at which
the amplitude pattern dévelops decreases as the wavelength of the inci-

dent radiation, A , is increased. Conversely, if only one frequency
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is~being transmitted (A, a constant), then the distance required for the
amplitude pattern development decreased with the scale size, L. At
distances, Z , less than half the value for the maximum pattern to
occur, Zm » the magnitude of the amplitude pattern may be approximated

by a linear expression:
Az/—f(l"-q)o-g%) (2-15)

This section has shown how the phase and amplitude patterns
evolve bghind weak phase-modulating screens that are represented by a
single spatial frequency. In the general case, where the patterns con-
sist of a finite number of these frequencies, the more complex patterns

are obtained on applying the principle of superposition.

2.2 The One-Dimensional Screen When Modulation is Not Weak
~When the cosinusoidal screen is used and ¢0 is not much less
than unity, Bessel function expansions must be used. The phase-

modulating term of 2-6 is written as:

j¢0 Cos ZWXO
e L _ cos (; cos 2“X0> 4+ j sin (} cos 2"XO) (2-16)
0 0 —_—
L L
where cos {4, cos 2“XO =J, (¢,) - 23, (¢$,) cos 41TXO
0 I 0 0 2 0 —

(2-17)

8wX
+2J4 ((bo) cOs 0_ o060

L
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and j sin [¢. cos 21rXO = j {23, (¢,) cos 2ﬂX0 - 23, (¢,) cos 61TX0
) 0 T 170 I 30 I
+ 23, (6,) cos 0% _ ... . (2-18)
5 0 -1

Here Jn(¢0) is the Bessel function of the first kind and nth order.

If 2-17 and 2-18 are substituted into 2-8 in lieu of 2-7 and the

integrations are performed with respect to XO and then S , the result

for E (x,z) is a series of terms of the form:

F " 23 (¢0) cos Tn2AFZ - j sin m2AFZ | cos 2mnFX (2-19)
. LZ I‘2 L

On colleéting terms and making the substitutions—~ T = 27FX ’

R = wAFZ , the in-phase and quadrature components become:

In-Phase

F (JO (¢0) + 2Jl (¢0) cos T sin R - 2J2 (¢0) cos 2T cos 4R
- 2J3 (¢0) cos 3T sin 9R + 2J4 (¢0) cos 4T cos 16R (2-20)

+ 2J5 (¢0) coS 5T Sin 25R = e aa .>
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Quadrature

(¢0) cos T cos R+ 2J (¢0) cos 2T sin 4R

1

/T (2J )

- 2J3 (¢0) cos 3T cos 9R - 2J4 (¢0) cos 4T sin 16R (2-21)
+ 2J5 (¢0) cos 5T cos 25R + ... {)

Calculations were made, using a simulation program, to obtain the
patterns that develop behind a sinusoidal phase—modulatiné screen which
is not weak. The phase pattern is taken to be relative to the specular
component of the angular spectrum, which becomes small with increasing
¢0 . For all values of ¢0 s this phase pattern will have a zero mean
over the spatiai period at the point where it is measured. The ampli-
tude pattern is taken to be the amplitude fluctuation about the mean
amplitude over the same period.

~The first calculations were made for a relatively weak modulation,
¢0 < 0.5 radian; these were followed where ¢0 was increased in steps
until it reached four radians. Figures 2 through 5 show the phase and
amplitude patterns which result for ¢0 having the values 0.25, 0.5,
and 0.8 radians for different values of 0 ; 0O = nXFZ/L2 . The
amplitude patterns were normalized to show variation about unity, while
the scale of the phase batterns is given in radians. It is observed
that for these values of ¢0 there are distances represented by ©

which yield patterns no longer cosinusoidal in appearance.

When a thin screen has a scale size, L , for every A , there

is a value of FZ that reduces either the phase or amplitude pattern.
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However, they do not vanish together. This extinction phenomena is able
to produce, at times, stronger amplitude patterns on 40 MHz than on 20
MHz radiation, even though ¢0 is proportional to A in the ionospheric
phase~modulating screens; values of O between 0.847 and 1l.161 for
the 20 MHz radiation produce this result. When the diffracting screens
are sufficiently thin and the source of radiation moves in a few seconds
across the region of the screen to be sampled, then the observed patterns
become functions of time which depend primarily on the motion of the
source., For this investigation, where the satellite source is moving at
a velocity of greater than 7 km/sec., the assumption is made that the
pattern is preserved over the sampling period. Using this assumption,
other behavior of the amplitudé patterns with the distance, © , can
also be used to provide insight into the quadrant in which this quantity
lies. When © 1lies between 0 and 7 for the pattern on the 20 MHz
signal, the 20 MHz and 40 MHz patterns would have peaks and nulls which
occur close together with respect to time. When © 1lles in the range
of 7 to 2r for the amplitude pattern on the 20 MHz radiation, the
nulls aﬁd peaks on the 40 MHz radiation are shifted along the time

scale such as to not be coincident with those of the 20 MHz patterns.

For phase patterns when © is between w/2 and m for the 20 MHz
radiation, this pattern is inverted with respect to the phase pattern on
the 40 MHz radiation. This increases the values obtained when phase dif-
ference measurements are made between the two frequencies. When ¢0>1 s
more terms are required by the Bessel function expansion to represent the

in-phase and quadrature components. Also, both the phase and amplitude
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patterns have finer structures and the in-phase pattern develops closer
to the screen. To be realistic in the simulations for calculating the
phase and amplitude patterns, appropriate values had to be selected for
the independent parameters. These were:

= wavelength, 0.015 and 0.0075 km
= gcale size, 1 to 10 km

= distance from screen to satellite, 750 to 600 km

N N
i

= distance from receiver to screen, 250 to 400 km

A number of combinations of these parameters were selected for
the computations that gave the following quantities as a function of
position in a direction parallel to the scale size.

‘e The in-phase terms using significant terms of 2-20.

e The quadrature terms using significant terms of 2-21.

® The phase pattern using 2-11 with all significant terms.
e The amplitude pattern using 2-12 witﬁ all significant

terms.

Although smaller scale sizes are observed in the phase and ampli-
tude patterns as the higher order terms become more significant with the
increase in ¢0 » the spatial period does not change; it is still L/F .
The phase pattern retains its sinusoidal shape for some values of © but
in general is distorted as shown by Figures 6 through 8. When these
patterns are sampled and their Fourier spectrums are developed, they will
show these variations as higher spatial frequencies. As the intensity of
the modulation represented by a single spatial frequency is increased,
for the thin screen the extinction phenomena and pattern inversion still
hold and occur at the same values of © which applied to the weaker

sScreen.
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It was of interest to determine the smallest va}ues of %0 which
will produce deep nulls in the amplitude pattern in the appropriate dis-
tance range of © . It was determined that, when ¢g Was greater than
0.8 radians, notches to zero could be produced in amplitude although the
depth and position of these notches are strong function of 0 . As
notches in the amplitude pattern generally occur when the in-phase and
quadrature terms change sign together, a rapid variation in the phase
pattern usually occurs in conjunction with a notch in the amplitude pat-
tern. As ¢0 becomes larger, amplitude nulls become more frequent and
the region of © , where the phase patterns appear sinusoidal, becomes
smaller. rSome examples of phase and amplitude patterns where @0 has
become increasingly larger areishown in Figures 6 through 10.

In conclusion, it is noted that as ¢O is increased from 0.5
radians to 4.0 radians, significant changes occur in both the phase and
amplitude patterns. The higher order terms become increasingly signi-
ficant and the amplitude pattern for these terms develops closer to the
screen. The interval, measured with respect to © over which the phase
pattern éppears sinusoidal, is reduced as ¢0 is increased while it
expénds around the points Nn/2 , N odd, until it only exists in narrow
banas around @ = Nw . The notches which develop in the amplitude pat-
terns are strongly dependent on both ¢0 and © . Though the patterns
may have most of their energy at the higher frequencies, the spatial
period does not change with increasing ¢0 . If correlation functions
are obtained for the phase and amplitude patterns that develop behind

these non-weak screen, these correlation functions will differ for every

value of ¢ .
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2.3 The Weak Two~Dimensional Screen
When the phase modulation along the screen is a function of two
orthogonal directions, XO . Y0 , that are normal to Z , then

instead of 2-1, for the angular spectrum:

® o 3 %+ 8yYp)
P(S;, S,) =/f B(X), Yo) e X dy,  (2-22)

Q) w00

Here S1 and 52 are the direction cosines of the scattered wave nor-~

mal in the X. and Y, directions respectively. If the modulation is

0 0
weak,
3o, (Xns Y,
E(Xo, Yo) = @ 070" "0 ~ 1+ j¢o cos 2TTXO cos ZHYQ (2~-23)

L, . L

1l 2
% + Yo X+
jam\T" T -2 T
or E(XO,Y0)=1+§fQ e L2/, . 12

' 4
(2-24)

w(B-B) (3e3)
+ e 1 2/+ e 1 2

Immediately above the screen at XO’ YO , the phase of the inci-

dent wave is:

j21rZO j'lTXO2 j'rrYO2
A AZ AZ

0 0
e e e
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The integral 2-22 including the phase terms for a finite Z0 then
becomes:
272, @ W % + Yo
0 . 29— " —
) % L I
P(Sl’ SZ) = e f 1. +—— (e
X, . Y X, Y jnX 2
(20 30) e (2o
+ e 1 2 + e 1 2 e 0 (2-25)
jny 2
0 _ J2m. +
3z, x (8% * 5,
e e dXOdYO

On integrating with respect to X0 and YO, the angular spectrum at the

screen is obtained:

2 2
j2nz ~inz, (%1 + 8, )
P(Sl, Sz) = e A (jAZO) e A
jﬂ)\Zo -5 + —];'2“ j21rZO _S_]_._ + _8_2__
L L L L
1+e e

(2~26)
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The expression for the field at X , Y , Z is then expressed as:

2
j2wsS.X - jwZs
sz 1 1

EX, ¥, Z2) = _[fP(Sl’ e A e A

-—00 =00

(2-27)

jZWSZY - Jus 2

2
A D\
e e dSldS2

Upon integrating and collecting terms, the expression for E(X, Y, Z)

is found to be:

2 2
;L2_1T_(Z+Z) JML‘!‘.Y_)

A (Z + ZO) _ j¢o
E(X Y, Z) = e F 1. + 2
—jnAFZ( 12 "'—1-2-)
L L
e ! 2_ cos 27F (X +Y_ (2-28)
L L

+ cos 27F X -Y_
L &

The amplitude of all the terms in the pattern has been reduced by F o,
the projection factor of the diverging rays.

When the multipliers outside the brackets of 2-28 which modify all
terms are removed, and the position of L1 is changed to simplify com-

parison with the patterns of a one-dimensional screen, 2-28 results in

the following in-phase and quadrature terms.
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In-Phase
= L 2 = L
1+ ig sin wAFZ (1. + 1 cos 27F <% + 1 Y)
2 2 L
Ly L, 1 2
(2-29)
= L
+ cos 2uF (X - _;_Y)
Ly 2
Quadrature
= L 2 = L
90 cos mAFZ [1. + “1_ \}cos 27 <x + 1 Y)
2 2 2 L L
Ll L2 1 2
(2-30)

+ cos ggi X - EL'Y)
! Ly

Using the same approximations for the weak screen used for 2-13 and 2-14

results in the following phase and amplitude patterns behind the two-

dimensional screen:

= L 2 = L
/] $0 cos mAFZ [1 + "1 cos 27F (X + Y)
2 2 2 L
L1 L2 1

(2-31)

+ cos 2nF (X —‘El Y
L L

P
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¢ = L 2 = L
A=1.+ "0 sin 7AFZ (1 + 1 cos 27F (X + "1 Y!

2 2 2 L L

Ly L, 1 2

(2-32)
= L
+ cos 27F X - 1Y

Ly L

Comparison of 2-~31 and 2-32 with 2-13 and 2-14 reveals that if
L1 = L2 the amplitude pattern will develop in one-~half the distance
required by the one~dimensional pattern. However, when L2 = §L1 R the
two-dimensional pattern does not develop until FZ attains 0.95 of the
value reqﬁired by the one-dimensional amplitude pattern for similar
development. Thus, when the scale size in one direction i1s increase,
the two-dimensional pattern will develop no closer to the screen than
does the one-dimensional pattern. Also, if the particular cases where
X =+ Y are neglected, motion along the pattern reveals two spatial
frequencies. These frequencies may vary from near zero to twice the
frequency of a one-dimensional screen as different combinations of L1 »
L2 s X , and Y are investigated. When the patterns are sampled pri-
marily along the direction of the larger scale size, the spatial fre-
quencies are lower.

Thus it is observed that when a one-dimensional, weak, cosinu-
soidal, phase-modulating screen is extended to the two-dimensional case,
there are significant differences in the spatial properties of thé pat-
tern E (X, Y, Z). Also, the distance at which amplitude patterns

develop may be reduced by one-half.
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However, the differences observed in the temporgl properties of
the pattern E(X, Y, Z, t) ° , at a fixed receiving point as a radiating
satellite passes above the screen, may be minor. These properties
depend on how the screen is crossed. The observed spatial frequencies
may be low, high, or single depending on the satellite path. Similarly,
a small-scale, one-dimensional screen may produce low spatial frequencies
at the observation point if it is crossed in a direction oblique to the
scale size. The complete periods of the patterns observed below a regu-
lar two-dimensional screen may become considerably longer than.those the
largest scale size would produce; the path across the screen must return

to a similar point in the pattern to complete the period.

2.4 The Two-Dimensional Screen When Modulation is Not Weak
In this case, the phase modulation at the screen can be expressed

as:

27X 27Y
j¢, cos 0 cos —0
Y L, L,
e (2-33)
Let A = 2™ ana B = 2™y
L L
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Then:

ZWXO ZﬂYo

k| ¢0 cos cos
L L

e = cos 3fg [cos(atB) + cos(A—B)]%
2

+ j sin %fg [cos(a+B) + coS(A—B)]i
2

When the expansions given by 2-17 and 2-18 are used for
¢0 > 1 radian , the three significant Bessel functions have t;he follow-

ing range of values:

1.000 > J (4’0) > 0.9385
of =2 .
2
0.2423 > J ("’o) > 0.0
1 —
2
0.0306 >

$
1.(%) > 0.0
2(2)

The higher order terms are neglected.

Expression 2-33 may be written as a sum of products:

27X 2q7Y
j¢0 cos ™0 cos -—”—Q
e 1 2 . cos Fi(_) cos(A+B)] cos [29 cos (A—B)]
2 2
- gin [f’_q cos(A+B)] sin -?i_Q cos (A_—B)] (2-34)
2 2

+ 3 sin [39. cos(A+B)] cos [S’Q cos(A—-B)]
2 2

-

+ j cos [?_0. cos(A+B)] sin [__Q cos(A-B)]
2 2
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When a Bessel function expansion is made for each term and the
multiplication is completed, if all Bessel function terms up to the

second power are retained, the screen pattern becomes:

JO2 (h) - 23, (;ﬁ) J, (;g) [cos (2A+2B) + cos(2A-2B)]

2J12-<ﬁ’9) [cos 2A + cos 2B] - 2.122 <¢0> [cos 4A+ cos 4]

2 2

+ j {ZJO (;_Q) Jl (?) [cos(A+B) + cos(A—-B)] (2-35)

21, (_;Q) 3, (_:Q) [cos (3A+B) + cos(3A-B)]

+ cos(A+3B) + cos(=A+3B)

When ¢0 is less than one radian, the J22 (i(_)_) and
2
3, (E) J, (f_Q) terms may be neglected. Then, using the same integration
2 2 /)
applied to the weak two—dimensional screen, the diffraction pattern

E(X, Y, Z) may be obtained. For the in-phase components, it has

(see following page):
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2

32 (o + 23 (o\ 3. (o) sin mFz [T+ YL \]cos 24F [x + L1 ¥
o (2 0 1 ZAFZ - Znt -
2 2) a2 L2 L2 L, \. L
1 2
- L
+ cos 27F X - "1 Y
L, L, (2-36)

2J12(g) cos 4TAFZ cos 47mFX + cos 4mAFZ cos 4nFY

2 2 L 2 L
L1 1 L2 2
' = L 2 = L
- 23 [oY I (¢ cos 4TMAFZ {1 + 1 cos 47F (X + "1 Y
0 2 — —5 - T
2 2 L 2 1 2 Ly L,
1 2
L
+ cos 4Fm [X - _E.Y
L\

and for the quadrature term:

‘ 2
2J0(9_> Jl(g> cos mF2 1+ 51 \lcos 20F [x + D1 v\ + cos 20F [x - [1
2/ L’ L’ I Ly L L
1 2
+ J12<Q) sin 4mAFZ cos 4nFX + sin 4mAFZ cos 4TFY (2-37)
2 2 L 2 L
L1 1 L2 2
= L 2 - L
+ 23 o\ I ¢\ sin 4nFZ {1 + "1 cos 41F X+ 1Y
0 2 Lyt 1 AnF 1
2 2 L 2 L 2 Ll L2
1 2
= L
+ cos 471F X - 1Y
L
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As previously, the same frequencies exist in the in-phase and the quad-
rature terms. The phase of the diffraction pattern at the ground, ¢ ,
contains all of these terms.

When the amplitude and phase patterns are calculated using
expressions similar to 2-11 and 2-~12, but including all of the terms of
2-36 and 2-37; these patterns contain some components that are two or
three times the spatial freqﬁency which eiisted at the screen. Also,
there are terms present that depend on X and Y above.

To determine some of the diffraction patterns which could form
behind the two-dimensional cosine phase screén, where the modulation is
less than one radian, the in-phase and quadrature terms havevbeen calcu~
lated using a simulation prograﬁ. These were then combined to obtain
the phase and amplitude patterns.

A number of patterns were obtained for transmitted frequencies of
20 and 40 MHz. Some of these patters are shown in Figures 11 and 12;
the patterns are plotted versus fX/Ll , the component of motion along
the small-scale axis. The AS value is the total displacement across
the screen.

When these patterns are compared with those which develop behind
a one-dimensional screen, it is observed that the multiple frequencies
are more in evidence for the two—-dimensional screen. Also, because of
the oblique paths taken across the regular screen, the spatial period

becomes, in general, several times longer than the scale size.
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For the same peak screen modulation, » the occurrence of

b |
deep nulls is less frequent. This is due in part to the average
modulating intensity of the two-dimensional screen being reduced by
a factor of 2/m as compared to the one-dimensional screen. Aiso,
there is an increase in the number of spatial frequencies in the
screen; the discrete combinations of X , Y , and FZ , required
to produce deep notches, occur less frequently for arbitrary passes
across the two-dimensional screen. Thus, larger values of ¢0 are
required to produce equivalent scintillation ratios for the ampli-

tude patterns which develop behind two-dimensional screens. The

one—-dimensicnal screen is the most efficient in this respect.

2.5 Screen ansisting of An Array of Discrete Blobs

The previous sections have all considered phase-modulating
screens where the variation of phase was a continuous function of
one or two dimensions along the screen. If the screen is made to
consist of a number of blobs, the individual blobs may be separated
by regions which have a constant phase modulation. For this con-
figuration, it is desirable to have a modulation function which
possesses zero derivatives at the center and at the limits of the
blob. A gaussian function does not fulfill these requirements; it
has derivatives which are zero at the center of the blob and at an
infinite distance from its center. The desired modulation func-

tion also should allow for a variable spacing of the blobs in a
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two-dimensional screen. Such a function is a series of cosine-squared

pulses which are considered first in a one-dimensional screen:

= ¢ _0 (2-38)
¢ (X,) 0 cos ——=

The function ¢(X0) as defined by 2-38 is an even function of

period d1 ; thus it can be represented by a Fourier series of the form:

cos 21TXO + a, cos 0+ ... . (2-39)
dl dl

(X, = 3, + a,

On solving for the Fourier coefficients, 2-39 is expressed as:

2nTL
sin 1

_ L °° d 27X
$(Xy) = ¢, a;+ > 1 cos 0 (2-40)

, ©n-l nn[1—<2“L1>2] d
4

The coefficients for the harmonic components contain, as a para-

meter, 2L1 , the ratio of blob diameter to center spacing. The norma-

4

lized coefficients (the largest value is made equal to 1) are plotted

versus n in Figure 13 with the quantity 2Ll/d1 a parameter. From four

to seven significant terms are required for the series representation; in



45~

IO & ® 2L/d =1/2
o A 2L/d=1/3
N X 2L/d=1/4
- X A 2L/d=1/5
o o 2L/d=1/6
L. A A
[o]
i X
A
o)
X 0o
A
C
. A
@ N °
X
N ) .
A
i ® X e
A
- A o
@
X A
| ] ] i i ] 1 | i [}
‘ 5 N 0]
n
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every case shown, 2L1/d1 from 1/2 to 1/6, the first harmonic has the
. largest amplitude.
If the phase modulation is assumed weak, the one~dimensional

screen modulation function may be expressed as:

2nﬂXo (2-41)

N
L
¢(X) =1+ 3¢, 1+ jo, 2. C_ cos
0 03 Op=1 ©® d

1 ' 1
The average component, which is similar to the effects of a uniform slab,
produces a mean phase shift for the undiffracted component. If each of
the terms are manipulated using the methods of 2.1, the in-phase and
quadrature components for the pattern at the ground, when the multiplier,

F » and the phase of the main component are removed, become:

In-Phase
N 9 — N
1+ ¢0 2: Cn sin n_mAFZ cos n2nFX
n=1 d 2 dl
1
(2-42)
Quadrature
3 2~ L

%0 2: C, cos n"m\FZ cos n2uFX + %o 1

n=1 d 2 dl d1

1

When this model is used for the thin screen, the mean value of the
phase shift, which the wave front makes in passing through the screen, is
L
g L .
i

1
pattern, it is not included in the expressions for pattern development.

Since this constant term does not contribute to the diffraction
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The phase and amplitude patterns which result from 2-42 are:

N

Y = ¢0 Cn cos nznAFZ cos n2rFX
n= d 2 dl
1
(2-43)
N ) — _
A=1+ ¢, ) C, sin n_mAFZ cos n2rFX
n=1 d,z dl

1

If the value of ¢0 is increased to permit consideration of second order

terms,
P = ¢0 Z C_ cos n wAFZ cos n27#FX
n=1 ©° d 2 d
1
o2 N 2 2, = -
-0 Y, C° sin p”2n)AFZ (1 + cos n4nFX
m————— n S rn————————— ————————
4 n=1 d 2 d
1
and
N 5 — _
A=1+ ¢0 Z Cn sin n wAFZ cos n2nFX
n=1 2 d
4

2 N -

+ 1/4 ¢ Z C 1 + cos n4nFX

0 n —_—

n=1 d
(2-44)
2 N<1 N
+ ¢0 Z cC sin nszz sin ‘mzﬂxfz .
— n=1 w=nt+l n m ———— —_—
2 d 2 d 2
1 1

[cos 27F (n + m) X + cos 27F (n - m) X]
d d
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Expressions 2-44 show that if the screen consisting of spaced
anomalies has a value of K¢b large enough for second order terms to
be considered (0.3 < 9 < 0.5), higher frequency components will be
observed in the amplitude pattern before they appear in the phase pat-
tern. Because the amplitude is the sum of the two orthogonal compon-
ents, the squared terms involved contain a number of additions. For
example, for N = 6 , the sixth, seventh, and eighth harmonics each
has three contributing terms. Because each of these terms has a
coefficieﬁt which is a function of TFZ » certain distances from the
screen may make them as large as the first harmonic. In particular,
small values of FZ tend to increase the relative importance of the
higher harmonicsﬂ

The discrete blobs may have a cosinusoidal shape in the two
dimensions, XOYO » In this case their Fourier series representation

becomes a product function:

Jto [fl(xo) £ (Yo)]

sin n27L
N 1
where fl(XO) = E;_+ 2: dl cos n2“XO
d; m=l 2nL dy
nrjl - 1
dl
(2-46)
sin m2%L
M 2
£,(Y,) = L2 + 2: d2 cos m2nY0
170 4, wel 2 d
2 onl1 - 2mL2 2
d

2
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When C and C_ are used for the Fourier coefficients, 2-45

becomes for the weak screen:

$(Xy, Y) = 1+ 30, (T2 + B2\ + 30, | 3o ¢ cos ¢
0 o\E . Ol& ™ a
1 2 1
(2-47)
M

+ 2: C ‘cos m21TY0

o 0

m=1 d2

If the methods employed to obtain 2~29 and 2-30 are used for 2-47,
the in-phase and-quadrature components are found at a distance, Z ,

from the screen:

In-Phase
N M 2.2
1+% 3 Y cc sinmrz(® FRY4 ).
2 n=lml "0 42 12
1 2
(2-48)
cos 24F <3X + ?Y)+-cos 2qF (%K _<§!>
1 2 2
Quadrature
N M _ mzd 2
_g E: 2: cos TAFZ n2 + 1
2 n=1 m=1 d 2 d 2
1 2
(2-49)

d 4, 1 4

cos 2qF nX + my + cos 2nF nX - oy
1 2 a4, 4.
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In the above expressions, when L., =d, and L, =d , only the

1 1 2 2

Cn . Cm for n=1 and w=1 are non-zero and they become identical to
2-29 and 2-30 which represent the continuous screen. If the blobs are
moved apart such that two and three values of Cn and Cm are signi-
ficant, the number of frequencies present in the patterns are increased
from 2 to 8 and 18--the number of frequencies being equal to 21‘12 « In
this situation the difference frequencies maintain the higher energy
level at the low end of the spectrum.

A computer program was used to calculate the in-phase and quadra-
ture terms of the diffraction pattern. These terms were then combined
to obtain the amplitude and phase diffraction patterns. Different blob
sizes and spacings were employed for the simulations, using transmitted
frequencies of 20 and 40 MHz. Some of these patterns are shown in
Figures 14 and 15. The independent parameters for the curves are the
screen model, the distance to the screén, and the direction of travel
across the screen. The directions are taken such that Y ; aX where
a has values of 0.001, 2.5, 5.0, and 100. The two cases where motion
is near parallel to X0 or Y0 show a periodic pattern. The oblique
crossings of the screen show pauses between the scintillations which are
obéerved at times in the records of satellite tracks. The phase patterns

show proportionally more low frequency components; these components take

a longer distance to develop in the amplitude patterns.
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2.6 A Thick Screen

In the previous models, infinitely thin screens'were used. For
these screens, though multiple frequencies may be present, no amplitude
variations exist when the wave emerges from the bottom. For ionospheric
phase modulation, the screens have a finite thickness over which the
modulation is imposed. To determine the effect of a screen having thick-
ness, the diffraction patterns produced behind five thin screens which
have a variable spacing, Zi » are Investigated. Each layer in the
multiple Screen has its own.scale size, Li , and modulation intensity,

¢i « At a distance, Zl » below the top layer of the complex field is:

(zl + z‘) < 1>
4 — 27 =t Mz, + 2
Z.) = JFE. e A e 1

1(

1 %1
_ _ _ (2-50)
1+ sin ™17 cos 2% 4 g4, cos ™1
2 I L2
1 1
cos 2"rlel
Ly

At distance Z1 , a second screen exists and weakly phase-modulates the

incident wave in the form:

o, (X,)
e 2 Vnis i¢, cos 2nXy (2-51)

L,




54—

Then immediately below this infinitely thin screen, the complex field is:

jnX

2 (Eys 2y
1. + ¢, sin 21 os Z“lel - 4,6, cos T 2y
L2 I, 2
1 1
cos 2™ . cos ZTrF1X1 [+ 1o, cos TAF 24 (2-52)
T ¥ 7.
2 1 L
co 21rF1X0 + 9 ﬂXl + ¢4 ﬂAFlzl
—— 25 =" "% 2
1 2 L,
cos 21rX1 21TF1X1
L, L

Each layer is considered weak such that ¢i £ 0.2 ; the spatial

frequencies associated with ¢i’ ¢j products will then have coefficients

less than 0.02 and may be neglected.
The process 1s continued to include the five cosinusoidal phase-

Z , below

modulating screens; then the complex field at a distance, 5

the last screen contains the single scattering contributions of each of
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the screens. The in-phase and quadrature components of the field as
functions of XS’ Z5 are:
In-Phase
1+ ¢ sin ™18 cos 213 s
L 2 Ly
1
+ ¢2 sin Tr)‘}?262 cos 21TF2F3F4F5x5
L2 Ly
2
+ ¢3 sin “AFBBB cos 2u 3F4F5X5
L2 Ly
3
+ ¢, sin 4Py cos 2T4T5%s
L,2 Ly
4
+ ¢5 sin 1T)‘FSZS cos 21TFSXS
L2 Ls
5
Quadrature
¢, cos ™F1P1 cos 20 FyFaF, Fs¥s
L 2 L
1
+ ¢, cos ™F2P7 cos 20F, FoF, FoXs
L,> L
2
+ ¢3 cos “AFSBB cos 2m 3F4F5X5
L2 Ly
3
+ ¢, cos T8y cos ZTrF4F5X5
L,2 Ly
4
+ ¢5 cos 1r>\FSZS cos 21TF5X5
2 L
L 5

(2-53)

(2-54)
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25 2 + F.7.2F.%F %% .2

- 2 7T
=2, +FFz +FFFz + F,F,F°F,2, 1By FyF, “Fo2g

where

- o = 2= 2=
F 2, + F P 7F, "Fl,

B4=24+F4F525

F, = yAg

1 "
Z°+ 2z,

F2= Z° + Z
Z°+ 2z, +2Z,

F3== Z°+ 2, + 12,
27+ 2 +Z, + Z,

Z°+ 2. + 2, + 2
Z°+ Z. + 2.+ 7. + 2

F o= Z+21+Zz+23+24

z° + Z1 + Z2 + 23 + Z4 + 25

A computer program was used to calculate the diffraction patterns
which developed behind this five-level screen. Twenty independent para-—

meters were used to define the screen:

$; » i=1, ... 5.

® , 1=1, ... 5.
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where mi is the phasing of the cosinusoidal modulation at
X =0 . The in-phase and quadrature terms were first obtained;
there were then used to compute the phase and amplitude patterns.
A nunber of patterns were computed to determine effects of vary-
ing independent parameters. Selected results are shown in Figures
16 and 17, where total thicknesses of 10 and 100 km have been used,
The patterns of both these screens show effects of the multiple
frequencies which are present. The only difference is that the
focusing or interference patterns of the thin screens are sharper.
A change,in screen thickness has little effect on the patterns
proéﬁced. This is particularly true when the screen is near thé
midpoint between the radiating.source and the receiver where the
pattern is observed. |
2.7 Relationships Between Diffraction Patterns and the Phase-

Modulating Screen that Produces Them

As the diffraction patterns measured behind an ionospheric
screen vary with the distance from the screen, the situation where
a satellite is tracked through an ionosphere of constant height
causes the patterns to be a function of zenith angle. This depen-
deﬁce on zenith angle results because the parameter FZ is
doubled when the zenith angle changes from overhead to 60 degrees.
At the screen itself, the variation of phase modulation across the
screen requires a corresponding variation in the electron density.
The diffraction pattern which the screen produceswon the surface

of the Earth has scatters which originate from a finite region
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of the screen when only weak scattering is considered. The two-
dimensional screens investiaged in this study have peak modulations
of one radian or less. The relationships between the patterns and
screen area, distance, and electron content variations are presented
in this section.
2.7.1. The region of the Screen that can Contribute to the Pattern
at One Point on the Earth's Surface
The radiation which is incident on the screen from above has
scattered components for the Nth harmonic which makes angles of

[31]

nA/L with the wave normal~". When the satellite source is at a
finite distance, z° s above the screen, the scattering angle at
the screen is nA/L , and the diffraction pattern is measured at a
distance, Z ,‘behind the screen; then the scatte?ed components
arrive at the observation point making an angle, nf)/L » With
normal of the undiffracted component.

Because the scattering angles are small for weak scattering,
the distance along the screen measured from the wave normal to the

point where the scattered component originates in the screen AS ,

is given by:

AS ~ FZ A/L (2-55)
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For the nominal satellite height of 1000 km and the ionospheric region
of interest starting a Z = 250 Km , FZ varies from 187 km to 250 km
when the satellite is overhead. When the zenith angle is increased to
50 degrees, then FZ wvaries from 280 km to 350 km for the same iono-
spheric heights (Figure 18). Some values of AS have been calculated
for the 20 MHz single using n =1 and FZ and L as parameters,
These are listed in Talbe 1. fhe linear dependence of these values on
n and ) makes them larger for n = 2 but less for the 40 MHz signal.

It is shown in Section 2.4, for the two-dimensional screens con-
sidered in this investigation, that the values of n of 1 and 2 are
adthate.' For a weak screen, only n =1 is used. It is evident that,
when the satellite is overhead, only those screens with scale sizes less
than two km will have scatterers originating at points more than a scale
size away from the undiffracted component. If the zenith angle is
increased to 50 degrees, scale sizes of three km or léss will have
scattering contributors at more than a scale size away from the undif-
fracted component; Thus it is seen, for the weak screen, that the re-
gion of the screen occupied by a few anomalies contributes to the
pattern. The ray optics theory may be applied here to determine the
confributing screen area as the scale sizes involved are very large
compared with the wavelength.

When modulation of up to one radian is considered, the region of
the screen which contributes to the pattern increased four-fold. How-

ever, the regioh contributing to the 40 MHz signal pattern is only one



KILOMETERS

-62-

h;, HEIGHT OF IONOSPHERIC PHASE SCREEN

1000 hg, SATELLITE HEIGHT 1000 km
§
| Fz=%2 %
z+2'
800
600}

h; FOR FZ MAX.

400

200 FZ, h;=250km

0 | | ! 1 1 1 ] L ]

20 40 60 80
ZENITH ANGLE (DEGREES)

Figure 18. FZ and hI for FZ Max Versus Zenith Angle
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Table 1 Distance Along The Ionospheric Screen From the Undiffracted

Component to the Scattered Component: A = 0.015 km n =

=
I

=
[

180 km
2.70 km
1.35 km
0.90 km
0.68 km

0.54 km

250 km 300 km 350 km
3.75 km 4,50 km 5.25 km
1.875 km 2.25 km 2.63 km
1.250 km 1.50 km 1.75 km
0.938 km 1.13 km 1.31 km
0.750 km 0.90 km

1.05 km

1
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quarter of the size of the region contributing to the 20 MHz signal
pattern. This limited region of the screen, which can contribute to
the pattern at a point in terms of the anomaly size, becomes a strip
for the length of record sampled. With the short records used for
analysis, only a few dominant scale sizes exist. The small number of
anomalies which contribute to the pattern over the record length is
used for justification of the modeling.

An increase in the zenith angle of the satellite's position not
only increases the effective distance, FZ , but also produces a tilt
of a spherically stratified screen away from its normal position which
it makes with the radiation at overhead. The tilt angle is given as a
function of zenith angle, with ionospheric height a parameter in Figure
19. If a zenith angle of 50 degrees is selected, fhen for n=2 and
L=1 (Table 1), the maximum value of AS dis 10.5 km. This displace-
ment increases to 15.7 km along the tilted screen and represents a
change of Z of 11.6 km. The effect of this change on the argument of

the Fourier coefficients; n2 2wAFZ s can be found'by using:

L2

Tz = g~ D 4 (2-56)

T
]

then:

d (n2 szz) = 02 2m (1 - _2_2) (2-57)
2 2 r
L L 8



-65-

This represents a change of 26.8 degrees in this extreme case, when
n=2 , L=1 , and zenith angle is 50 degrees. For the weak screen,
the change in the function of Z is only one-eighth as large. Thus,
for this study the effects of tilts will be considered to be second
order. The major effect produced when the screens are tilted is to
alter the projection of the anomalies on the plane which is normal to
the line of signal propagation, The scale size observed at the antenna

is changed when tilting is present.

2.7.2 The Effect of Zenith Angle and Distance on Amplitudes of the
Various Frequency Components of the Diffraction Patterns

The previous sections demonstrated that for the one~dimensional,
weak phase screen éach Fourier component in the amplitude pattern is
multiplied by Asin ﬂXFE/LiZ , while each Fourier component in the phase
pattern is multiplied by cos ﬂXfZ/Liz , wWhere Li is the scale size
at the screen which produces the particular component. When the screen
has a phase modulation which is a function of two dimensions, the term
ﬂXFZ/LiZ is multiplied by a factor which lies between 1 and 2, depend-
ing on the relative scale size in the two dimensions. When these scale
sizes are equivalent, the factor is 2 and the same frequencies are con-
tained in the diffraction patterns regardless of the satellite motion
over the screen. When one dimension is twice as large as the other, the

factor is 1.25 and some of the frequencies can be lower due to the dif-

ference terms (2.32). Thus it is seen that the frequencies which appear
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Figuie 19. Ionospheric Tilt Versus Zenith Angle for Two Screen Heights
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prominently in the diffraction patterns depend on the two-dimensional
scale sizes, the distance to the screen, and direction in which the
screen is crossed.

The variation in FZ as a function of zenith angle, for three
values of ionospheric height and a satellite height of 1,000 km, has
been calculated. This has been used in the expression ZHXfZ/Liz for
A =0.015 km to determine the variation of Li versus zenith angle
when ZWXFZ/LiZ is a parameter. These are presented as the curves in
Figures 20 through 25 where O = ZWXfZ/LiZ is the parameter.

Values of © of #/2 and 37/2 would maximize the amplitude
pattern, while values of © that are near 0 or 1w would maximize
the phase pattern. When a one;dimensional screen or the 40 MHz
(A = 0.0475 km) signal is considered, 0 is ©/2 . These curves are
used to determine how each scale size can coentribute to the amplitude
or phase patterns observed on the Earth's surface.

When these.patterns are recorded and analyzed by Fourier methods,
certain frequency components have more energy than do others. The
relatioﬁships between scale size and zenith angle with frequency as a
parameter for the same satellite have been calculated and are presented
in the b curves of Figures 20 through 25. These curves are used with
the Fourier spectrums to determine the scale sizes of the phase modulat-
ing screens.

Figures 20 through 25. have two applications; ome is to determine
how a change in zenith angle will cause 0 to vary for a given scale

.

size. The other is to determine what scale sizes are required to produce
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20 40 60 80
ZENITH ANGLE (DEGREES)

Figure 20. Scale Size Versus Zenith Angle with O a
Parameter, hI = 250 km
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Figure 22. Scale Size Versus Zenith Angle with Q a
Parameter, hI = 400 km
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certain frequency components in the pattern. Then the dependence of
the Fourier coefficients on the particular value of © is determined.
A large portion of the data analysis involves the comparison of
the phase and amplitude patterns and theilr frequency spectrums. To
help accomplish this comparision, the relative importance of the coef-
ficients of each term have been»calculated and plotted as a function
of © ., If the 20 MHz amplitude pattern has Fourier coefficlents of

the form:

Ai(zo) = ¢ sin 1 (2-58)

when v; = phase modulation imposed on the 20 MHz wave;

>
]

wavelength of the 20 MHz signal, 0.015 km;

=
]

scale size of the ith term;

the 20 MHz phase patterns will have Fourier coefficients of the form:

_ 27, FZ _
Yi0) = ¥ cos % (2 59)‘
L

i

and the Fourier components of the amplitude and phase patterns of the

40 MHz signal have the coefficients:

2mA FZ
¢i/2 sin g
L
i

A4 (40) (2-60)
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- 27 FZ -
Y3 (40) ®; /g cOS 2 (2-61)
o 2
L,
i
where Az = the wavelength of the 40 MHz signal.

The phase measured at each end of the baseline system is that of
the phase difference between the two frequencies. The components of the

phase difference have the coefficients:

B 27A, FZ 272, FZ
‘bi(20—40) N ¢i (C°S__;___ -1 cos 2 ) (2-62)

L, L.2
i i

Y-

The three patterns used in most of the comparisons are the two
amplitude patterns and the phase difference patterns. These patterns
are plotted as a function of 0 for the A of 20 MHz and with ¢i
normalized to 1 in Figure 26,

Examination of these curves reveals intervals that yield larger
coefficients for the 40 MHz pattern than for the 20 MHz pattern. Also,
when © lies between w and 2w , the coefficients of the two ampli-
tude patterns are of opposite sign, which shifts the nulls of one pat-
tern with respect to the other. The phase difference pattern is seen
to have coefficients which are from zero to 1.5 times larger than ¢i .
The nulls in the Fourier spectrum of the 20 MHz amplitude patterm will
occur in conjunction wifh a maximum in the phase difference pattern.

The other diffraction pattern considered is obtéined from the

phase difference across the baseline. 1In the simplest case, the satellite

motion is parallel to the baseline and the screen has a one-dimensional
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variation in the same direction. Then the interferometer phasé pattern

for the 20 MHz signal will have Fourier components of the form:

277, FZ = =
wi(20—20b) = ¢, cos 1 cos 27FX - cos 2%F (X-q)
2 L L
L i i
i
— (2-63)
= 2¢, cos 2 FZ sin HFZb cos[2rFX - n
+ 2 L L
Li i i
. 2
- sin 21F b
where tann = Li
1 - cos 2ﬂF2b
L,
i
q = the separation at the screen, gq = Fb.

Thus it'is seen that the baseline interferometer acts as a spatial
filter on the Fourier components. The scale size whose diffraction com-
ponent lies at the center of the pass baund, Li(M) , 1s a function of

b and ?2

_ 2
Li(M) = 2 F%

The scale size is within the filter half-power points when:

=2

1.33 b <L, < 4,F%

i

When the baseline is parallel to the scale dimension of the one-
dimensional screen but not to the satellite motions, then the rays to
the two ends of the baseline follow parallel tracks through the iono-

spheric screen which are separated by distance, 4P

AP = TFb sin o (2-64)
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where o 1is the angle between the baseline and the satellite motionm.

The separation of the rays measured in the direction of motion is

AD @

AD = TFb cos o (2-65)

which has the effect of increasing the apparent scale size. The baseline
length, b , must be longer by sec o to maximize a particular Fourier
component when the satellite motion is not parallel to the baseline. The

two requirements for maximizing a particular Fourier component are then:

Li = 2F2b cos o
{2-66)
L, = 2/ Fz

The frequencies most often observed in the diffraction patterns
measured indicate that Li is from 2 to 5 km. As the value of F lies
between 0.5 and 0.75, a baseline having a length of 5.0 km would place
the pass band in the center of the expected frequencies. The 1 km base-
line use& in this study put the diffraction components of all scale sizes
greater than 2.2 km outside of the half-power point. The scale size
which is so attenuated is reduced to 1.0 km when the screen lies half-way
between the satellite and receiver.

The effects of a particular baseline length can be extended to
include the more general case where the screen is two-dimensional and the

directions of the satellite ground track, the baseline, and the XO axis

in the screen are arbitrary. If 8 1is the angle between the direction
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of the XO axis and the baseline, and a is the angle between the base-~
line direction and the satellite ground track, the motion across the

screen is such that:

g = 2

(2-67)

o
it

Tan (o + B)

1f a ray through (XO, YO) goes to one end of the baseline, the ray to

the second end has a parallel direction of travel:

YO. = aXO + P
XO‘ = XO - Fb cos B (2-68)
P = Fb (a cos B - sin B)

The individual sum and difference frequencies for the phase pattern of a
two-dimensional screen are given by 2-31. If the relationships of 2-67
and 2-68 are used in 2-31, and a phase difference across a baseline simi-

lar to 2-63 is desired, expression is:

- 2
9,(20-200) = #i cos ™1™ [14+ "1 \leos 20F |1+ 1 alx
2 2 2 L L, (2-69)
1 2
- L - L
~ cos 21F {1 + "1 a) X - Fb [cos B £ _1 sin B
L T L



-80~

This can be expressed by:

wi(20—20b) = ¢, cos mFz [1+ M1 sin ﬂsz cos B % El’sin B8
L 2 L2 Ly L
1 2
(2-70)
cos | 20F (1 + El_ al X -y
L Ly
- sin 20F°b cos B * El‘ sin B
where vy = T,sm-l L1 L2

1 - cos ZnFZb cos R * _I_j___ sin B

Ly Ly

when a=0 , =0 |, L1 =‘L2 = Ll s, 2~70 and 2-63 are identical.

The filter‘effect of the baseline is then represented by a product
of a function of Z and a function of b , each of which has its nulls,
When b/Li is small, the diffraction component which has the scale size
will be attenuated for all 2Z .,

The phase difference patterns between the two frequencies as
expressed by 2-62 use signals which also have a separation of their paths
from the satellite to the antennas located at one end of the baseline.
When these 20 and 40 MHz signals pass through the ionosphere having a
zenith angle which is not zero, their ray paths are bent by different
amounts, The 20 MHz signal is bent the most; it enters the top of the
ionosphere with a smaller zenith angle than that of the 40 MHz signal.

The two rays will cross at a point slightly above the height of peak

ionospheric density and have a maximum separation at%heights of 200 and
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500 km. Calculations made using a parabolic profile indicate this maxi-
mum separation for nighttime conditions to be about 1.0 km for a zenith
angle of 30 degrees and 2.5 km for a zenith angle of 45 degrees. A sepa-
ration between the ordinary and extraordinary components of each fre-
quency also exists and has been discussed by Roger,(1965)[13]. The
spatial frequencies obtained from the records of diffraction patterns

and the time correlation of the amplitude patterns of the two frequencies
indicate.that any .separation at screen heights is small.

The separation of these rays in the ionosphere is a function of
the frequencies, the zenith angle, and the ionospheric profile. There is
no dependénce on F as is true for the baseline system. Let the ray
path projection on the screen make an angle, o ,with the direction of the
satellite track across the screen and let this track make an angle, B ,
with the X0 axis. Then 1if the separation of the two rays measured along

the screen is r , this separation has components in the screen coordi-

nate system given by:

XO - XO = 1 cos (a + B)
(2-71)
YO - YO = r gin (a + B)
When the satellite motion across the screen is given by:
o = &
(2-72)
a = Tan B



-82~

Then the relationship between the two points in the screen can be

expressed as;

Xo = X0 + r cos (o + B)

(2-73)

YO‘ = aX, + r sin (o + B)

The Fourier coefficients for this difference pattern, when the
screen was one-dimensional and there was no differential refraction, were
given by 2-62, When the screen is two-dimensional and the diffraction
separation and satellite motion is given by 2-72 and 2-73, these coef-

ficients are:

wi(20-40) = gi cos jﬁl;i 1+ El;_ cos %ﬁi (1 * ;l_ é) X
Ll L2 1 2
(2-74)
- fi cos ffgff 1+ Eli cos gﬁi (l t El_a) X+ v
4 le L22 L, L,

where V = [%os (o + B) + El_ sin (a + Bi]

L,

This can be expressed by:

[
ot

t

¥,(20-40) = K cos |21F (11 a_) % - (2-75)
Ly 2
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2 L 2 L 2

— 2 = 2\
where K = ¥i cos? ™F 1411 V4 _]:_cos2 ™2 i+ Ly
4 2 2
1 2 / Ly Ly

= 2 - 2
- cos nAlFZ 1+ L1 cos “AZFZ 1+ L1 :)cos 27 FrV
2 L
L2 1

sin 27FrV

Y = tan“1 L1

2 - cos 2mFrV

Ly

When r 1is O , the magnitude of wi(20—40) has a dependence on 2
and the scale sizes as shown in Figure 26. When r is not zero, the same
limits exist for wi(20—40) , but they will occur for different values

of Z . Thus if: 24FrV = /2 , the phase difference curve is
L
1

shifted to the left by © =17 and inverted so the value is + 1

when Z =0 . When 27FxV = 1 , the curve is shifted to the left

Ly

by w . Thus, when ray separation occurs, the particular value of FZ
which suppresses a Fourier component originating from a scale size, Li R

is shifted to another value. The preseﬁce of ray separation does not

eliminate more spatial frequencies:; in fact for; 27FrV = /3 s
L

1
regions exist where all three of the patterns represented by Figure 2§
can have significant Fourier coefficients for the same © .
In the development above, the form of the individual Fourier com-

ponents has been determined for the different pattérns that were measured,

These were functions of the modulation at the screen, the scale size, the
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distance and the wavelength. Next, the relationship between the power
of the phase and amplitude patterns will be determined. Let the ampli-
tude pattern of the 20 MHz signal consist of a number of weak Fourier

components so it can be written as:

N n?2m\ Fz =
A = 1+¢ 2: C_ sin 1 cos 2mnFX (2-76)
0 n —— e
n=1 2 L
L
then:
-2 2 N 2 2xbn T
pR” = %07 3" C ° sin 1 (2-77)
XZ 2 n=1 L2
And the phase pattern for the same screen has the variamnce:
N 2 =
W = %02 3 c? cos? P 2TMFZ (2-78)
2 n=1 2

L

However, the phase patterns measured are phase difference patterns, either
between the two frequencies at one point or between the two ends of the

baseline. The variance of the pattern across the basline is:

_ 2 nrFb _
vy = 2647 2, € " cos 17 )sin” (2-79)
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When the phase difference between the two frequencies is taken,
and vo represents the phase modulation of the 20 MHz signal, the

variance of this diffraction pattern is:

N 2. = N
2 2 2 2 n 2w\, FZ 2
V20400 T o2y G s ()t X %
L
(2-80)
2 - N 2 — 2 =
c032 n ZnAZFZ _ 2: CnZ n ZﬂAlFZ cos n 2w12FZ
L2 n=1 L2 L2

The quantities on the left of expressions 2-78, 2-79, and 2—80’have been
calculated from the measured data and are part.of the output of the
Fourier analysis computer programs. The relationships existing between
the amplitudg scintillation and the phase scintillations of the two

difference patterns are given by the following functions:

2 ———
N 2 9 n ZﬂleZ
2 2 2: Cn sin 3
BA” = T, n=1 L (2-81)
2 N 2 —
X Z an cosz n zmle sin2 E_E_F_b_

n=1
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and

ax_ 2 (20-40) n=1 "
2 N 2, = N 2 2, =
A {Z 62 cos? [P20F2Y s ¢ 2 fn%am,Fz
n N
n=1 2 n=1 ip)

Expressions. 2-81 and 2-82 emphasize the fact that, when a phase-modulat-
ing screen contains more than one spatial frequency, relationships
between any of its diffraction patterns are complicated functions of
FZ . TFunctions involving Z and the first Fresnel zone are not adequ-
ate for describing the dependence of one pattern on another.
2.7.3 The Ionospheric Variation Required to Produce a Given Peak
Phase Modulation at the Screen
Previous sections have discussed the relationship between the
peak phase modulation at the screen, ¢O , and the diffraction patterns
which develop behind the screen. This section develops the variation
in electron density required to produce a certain value of ¢O . Since

the screens are relatively thin, and the scattering is weak, the effects

of multiple rays within the screen are neglected.
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The phase path length of a ray from the satellite source to the

receiver is found by integrating along the ray path:

¢ = 2n udz  radians (2-83)
A

In this investigation, changes in the phase path length due to variations

in the electron density are of interest. When collisions and magnetic

field effects are neglected, the refractive index has the following

dependence on the electron density:

e (1 - 80.62 N(Z)) 1/2 (2-84)
where N(Z) = the electron density per meter3 as a function of 2
f = 'the transmitted frequency in Hz

When the linear term of the binomial expansion of 2-84 is used
for the variation in u and is inserted in 2-83, an expression for the
variation in the phase path length is obtained:

AP = - so.sszncz) az (2-85)

CZ
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The dependence of N on Z gives it a variation over the total path
through the ionosphere. Here the variations of interest are those which

occur over a small portion of the ray path. Let this small scale varia-

tion obey the function:

N(Z)

(2-86)

s elsewhere

where * LZ is taken about the center of the small scale variation.
This is a smooth function with zero first derivatives at the origin and

* LZ . When 2-86 is integrated over the limits, the total electron

variation along the ray path is found:
f‘N(Z) dz = 2LZ NM (2-87)

If 2-87 is inserted in 2-85 using the values: LZ = 1000 meters and

2 = 15 meters, then:

pe = 84425 x 1000 N (2-88)

The values of NM , which will produce certain changes in phase when
the density variation follows 2-86, are given in Table 2 together with

the maximum first derivative for the density functionm.
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Table 2 Maximum Vatiation and Derivative in Electron Densities For

Cosine-Squared Shape Blob, L, = 1 km, A = 0.015 knm

z
. N electrons/me'cer3 dN, /dz electrons/meter4
radians M M

.1 -.118 x 10%° .186 x 10’
.2 .237 x 10%° .372 x 10’
4 474 x 1010 744 x 107
.6 .711 x 100 1,116 x 10’
.8 .948 x 10%° 1.488 x 10’

1.0 1.184 x 1010 1.860 x 10’
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With the blob dimension used, a peak phase modulation of 1 radian
is obtained when NM is about 5 or 10 percent of the density at the peak
of the ionospheric profile. If the blob was elongated in one direction
such that LZ was 5 km with the dimension normal to the Z axis being

one kilometer, then a value of N, which represented a 1 to 2 percent

M
variation in the nighttime peak of the F region would give a phase
modulation of 0.2 to 1.0 radian.depending on the angle at which the ray
passes through the blob.

When the phase diffraction patterns which represent phase differ-
ences at a point are displayed on the oscilloscope, they contain large-
scale phasé vafiations in addition to the variations due to the dif-
fracted components.

As the integfal 2-85 changes, the time of occurrence of the zero

crossings at the receiver will vary. The wave at the receiver has a

dependence on time and distance:

_on ] : _
E, = Ee (wt - %\_T[f udz) (2-89)

A positive going zero crossing will occur in the real part of 2-89 when:

L (3, 2 (2-90)
% = % (2 3 “dz)

Examination of 2-85 and 2-89 shows that dt/dN is negative. An
increase in N causes the zero crossing to occur earlier. Thus, for

the phase difference display described in Chapter 3, the net effect for
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an increase in .,f N (dz) 1is that the record traces for the two fre-
quencies move apart. This occurs in the records when the ray paths move
through large-scale anomalies.

In the diffraction patterns an increase in the integral of N(Z)
produces a negative change in the phase modulation of each of the two
frequencies. This increase causes the pattern to move out or in on the
display depending on the scale size and distance from the screen to the
receiver. The individual components of the diffraction patterns have

coefficients which change sign as a function of distance from the screen.
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CHAPTER 3 A SYSTEM FOR OBTAINING SIMULTANEOUS PHASE AND AMPLITUDE RECORDS

The thgoretical development of the previous section relates how
the phase and amplitude diffraction patterns, which occur behind a phase~
modulating screen, depend on the transmitted frequency, the distgnce from
the screen, and the scale size of the screen irregularities. To permit
comparisons of the patterns to be made, using the scintillations on the
received signals transmitted from satellites, a system was designed for
recelving two frequencies. Each of these fréquencies is received at the
two ends of a one km baseline antenna system. The system that evolved

was specifically designed to track NASA satellite S-66.

3.1 The Satellite
A sclentific satellite built by NASA, Space Object No. 1964~64A,
known as S-66, was launched on October 9, 1964 from Vandenberg Air Force

Base, 1Its orbit had the following characteristics:

Semi-Major Axié 7358.8 n.mi.
Eccentricity 0.013
Inclination 79.69 degrees
Period 104.7 minutes

The satellite transmits CW on the frequencies of 360, 41, 40, and
20 MHz among others. The measurements made utilized the harmonically

related frequencies of 20 and 40 MHz.



-93-

The relative position of the satellite to the tracking stations
as a function of local time is given in Table 3 for two of the passes
used to obtain scintillating records. Short segments of these records

(10 seconds or less) were selected for analysis.

3.2 The Baseline Anténna System

The inclination of the satellite of interest Wﬁs 79.69 degrees,
which was taken into account in selecting the direction in which the
baseline antenna system was extended. The baseline is one km in length
and has a bearing east of north that Wili allow the sub-satellite track
of some south to north passes of .$-66 to be parallel to the baseline.
Two antennas, one for 20 MHz and one for 40 MHz, are positloned at each
end of the baseline. They are crossed, folded dipoles and are attached
to poles to provide spacing from the ground plane of a little less than

A3 .

The folded dipoles have an impedance .of about 300 ohms. To
assure that the maximum signal is delivered to the connecting cables,
the dipoles are phased and matched as shown in Figure 27, The crossed
half-wave dipoles with a length which is 0.95 of the free space half
wavelength aie phased together with 300~-ohm lead, The connecting balun
is made of RG-59, and the matching section used to couple into the RG-11
lines is a section of RG-8.

The antennas at the ends of the baseline are located at different
distances from the station housing the receivers, with one location 600

feet southeast of this station. A loss of less thian 10 db 6ccurs



Table 3 Relative Position of Satellite to Tracking Station

(a) Film Run S-66-41

-4~

March 6, 1965

Zenith Angle Latitude

Slant Range Azimuth

Local Time (km) (Degrees) (Degrees) (Degrees)
.23 10 40 1605.9 ~15.337 61.075 51.3
23 10 50 1550.5 ~15.592 59,333 50.7
23 11 00 1496.2 ~15.880 57.445 50.2
23 11 10 1443.1 -16,207 55,521 49.6
23 11 20 1391,3 -16.580 53.433 49.0
23 11 30 1341.0 -17.009 51.210 48.5
23 11 40 1292.4 -17.507 48.841 47.9
23 11 50 1245.7 ~18,089 . 46,316 47.3
23 12 00 1201.1 -18.774 43.624 76.8
23 12 10 1158.8 -19,641 40,760 76.2
23 12 20 1119.1 -20.612 37.712 45.6
(b) Film Run S-66-43 March 10, 1965

21 32 00 1268.1 63.146 47.323 43.6
21 32 10 1262.6 67.648 46.991 43.0
21 32 20 1260.7 72.211 46,855 42.5
21 32 30 1262.5 76.779 46.920 41.9
21 32 40 1268.0 81.297 47.183 41.3
21 32 50 1277.0 85.713 47.634 40.8

-Longitude
(Degrees)

82.5
82.3
82.1
81.9
81.7
81.5
81.3
81.1
80.9
80.8

80.6

68.8
68.6
68.5
68.3
68.2

68.1
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for the path from these antennas to the station, and is offset by use
of signal stage pre-amps. The other antennas are located 3,200 feet
north of the form station. To compensate for the line loss of about
40 db, multiple stage pre-amps are installed near the antennas. These

pre—amps are line-~powered from the receiving station.

3.3 Equipment for Obtaining a Simultaneous Display of Phase and
Amplitude Scintillation

The equipment described here provides for the simultaneous dis-
pléy of tbe phase and amplitude scintillations as received at one
location or at each of the two locations at either end of the 1 kﬁ base-
line, Two amplitude scintillations and one relative phase scintillationm,
as well as time hacks at one~second intervals can be recorded on film
and/or displayed on the oscilloscope.

The receivers, converters, and tracking filters used to transfer

[14]

the H.F. signals to audio frequencies are described elsewhere , and
thus only a broad outline of the block form of the receiving system
(shown in Figure 28) is given here. The receiving system is a tracking
heterodyne system in which the incoming H.F. signals beat with a locally
geﬁerated signal to produce a difference frequency in the audio region.
The local oscillator tracks the incoming signal as it varies with doppler
shift, and maintains the difference frequency at either 250 or 500 Hz
depending on whether the 20 or 40 MHz transmissions are received. The
converter in the receiving system is a Tapetone Mod?1 TC~60 which has

been realigned to handle 20 or 40 MHz. It has two cascade stages and a

conversion stage and provides a gain of about 35 db. The receiver is a
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modified Specific Products Model SR~7, which is doubly converting and
has sensitivity of better than 2 microvolts. The discriminator circuit
takes the audio output whichbis limited and split into two components
with a relative phase of 90 degrees at the desired audio output fre-
quency. These phase-shifted components drive a balanced modulator. At
frequencies above or below 500 Hz, the output has a zero frequency com—~
ponent with magnitude proportionate to the deviation and polarity, de-
pending on the direction of the deviation. This output is applied to a
voltage-controlled oscillator with a nominal frequency of 1 MHz. Its
output is used by a frequency multiplier which furnishes the correct
beat frequency to the converter stage. In this fashion the frequency
tracking loop is closed to provide the desired outputs of 250 or 500 Hz.
Through the outpﬁts of the frequency multiplier, one tracking loop is
able to supply four receivers (two frequencies are tracked at each end
of the baseline) with the correct heterodyne frequencies.

A block diagram of the equipment used to process either the live
or recorded signals is shown in Figure 29, and is intended to illustrate
only the functions of the units and not all connections. Only those

(141, [15] .

chassis peculiar to the system, not previously descrived
discussed in detail.

The equipment of interest is assembled in onme rack, which takes
the output of the receivers with frequencies of about 250 and 500 Hz

and converts them to a film record for use in analysis of signal

scintillations.



PRE AMP

250 CPS l l500 CPS (40 mc)

PHASE MARK

250 léoir/////—-TmeeER SELECT

Figure 29.

GEN. TRIGGER
| 500 PULSE
250 PULSE
S AMP 2 AMP PULSE ADDER
AMP PULSE
SAWTOOTH — —>
TIME
> AMP | MARK INTENSITY
MODULATE
SAWTOOTH
TIME
SWEEP
ouT
SCOPE
CAMERA

Block Diagram of Signal Processing System



-100~-

The positive-going zero crossings of the audio frequencies are
used to generate pulses, one of which is used to trigger the oscillo-
scope. The signals are also fed to amplitude detectors whose envelope
is used to generate a pulse, the position of which, with respecf to the
trigger pulse, is proportionate to the amplitude. A time mark pulse is
also generated. All of these pulses are added and used to intensity-
modulate the beam of the scope. As scintillation in amplitude and in
relative phase occurs, the dots on the scope move back and forth with
respect to the trigger mark. A continuously moving film records this

motion which can be used for analysis.

3.3.1 The Non-Linear Pre-Amplifier

To assure steep zero crossings over a wide range of inputs, a
non-linear amplifier (see Figure 30) is needed to amplify the weak sig-
nals and limit the high portion of the signals. This amplifier has two
channels which can be fed from common §r separate inputs. The grid
circuits of the first stages have parallel resonant filters that are
tuned to 250 and 500 Hz. The output of the first stage is fed into a
network that isolates the d.c. and feeds the a.c. signal across two
dibdes of reversed polarity, which yields a maximum output for the stage
of about * 1 volt. Then small input signals are amplified while larger
signals are amplified and then limited. The following two stages give

an adjustable gain and an impedance match.
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3.3.2 The Phase Mark Generator and Trigger Amplifier

This one unit contains three pulse generation channels and a trig-
ger selector and amplifier. The channels are tuned for frequencies of
250 and 500 Hz. The inputs can all be separate or the 250 and 500 Hz can
be common.

The input stages are tuned to reject unwanted frequencies,; and
the fllters for the 250 and 500 Hz. channels are of the series parallel
resonant type. The output of the first stage is isolated by use of
transformers, and is clipped by IN462A diodes. The resulting rectangular
wave 1s then differentiated to produce pulses, and the positive—gqing
pulse is removed By use of another diode._ The outputs from each of the
three channels then go to the adder.

The 250 ch‘ and 500 cps pulses are also connected to a switch
where either can be selected for amplification in the trigger circuit,
The trigger circuit has two stages and adjustable gain, and the output
trigger pulse is used to trigger the oscilloscope. This unit is shown

in Figure 31.

3.3.3 The Amplitude Units

Except for minor differences these two units are alike; they both
have as an input one of tﬁe receiver outputs of the signal recorded on a
channel of the tape recorder. The waveform generated is a negative pulse
whose time displacement from the pulse which triggers the scope sﬁeep is
proportionate to the amplitude of the input signal,. These pulses are

generated by comparing two voltages.
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First the input signal is amplified and detected in a manner that
gives, for the output of the first stage, a negative voltage proportion-
ate to the amplitude of the input wave. This negative voltage 1s fed to
a common summing point by a 39K resistor; the other voltage at the summ-
ing point is a positive-going ramp generated by the oscilloscope sweeper
circuits. The scope sweep voltage is fed to Amp Unit 1, where i1s is
divided, biased, and passed through a cathode follower. The voltage
waveform out of the follower is used by Unit 1 and is also connecte& to
Unit 2 and the Time Mark Generator. 1In each case, the positive-going
wave is fed to a summing point through a resistor.

The summing point is connected to ground by two diodes, in par-
allel but with reversed polarify. At the start of the sweep, the volt-
age at the point‘is negative and small due to switching action of the
diodgs. When the sweep voltage is larger than the magnitude of the
detected voltage, the voltage across the diodes is positive and small,
However, during the transition time when the sweep voltage is within
+ 1V of the magnitude of the detected voltage, a positive-going ramp is
generated,

The positive-going ramp is then amplified by the following two
stages, the last of which has a transformer-coupled output. The wave-
form is biases so that the steepest negative slope passes through zero;
then the wave is clipped and differentiated to produce pulses. The
positive pulses are removed and the output is obtained from a cathode
follower. The amplification stages are used to'produce a steeper slope

than that produced by the scope sweep.
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The differences,bétween the two amplitude units are in the sweep
circuits and the provisions for time marks. Unit 1 contains the circuit
for modifying the sweep wave form, and Unit 2 is connected to the timer
switch. The timer switches in, for a fraction of a second, a 10K resis-
tor in parallel with the 47K éesistor that feeds the sweep wave to the
summing point. This causes an abrupt displacement of the amp pulse and
serves as a time mark, as well as for identifying the output of Unit 2.

See Figure 32,

3.3.4 The Time Mark Generator

The same principle is used for pulse-generating in this unit as
is used for the amplitude units, the difference being that the negative
voltage is supplied by the dry battexry pack. A voltage divider circuit
is used to position the time mark at the right edge of the scope trace.

Since the time mark appears only during that fraction of a second
when the synchfon cam is not suppressing the switch, and at the end of
the traée, adequate pulse sharpening is obtained through use of one
amplification stage. The bases of the negative-going pulses are
removed by the series 1N629 diodes. A small capacitor is placed across
tﬁevoutput to filter out the high frequency components which arise from
the swifching action.

The 30 RPM synchron cam provides time marks spaced by 2 seconds;
on alternate seconds it also gives interrupts of the output of the Amp
2 Unit. Thus, time marks are provided at one-second intervals.

(See Figufe 33.)
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3.3.5 The Adder

The Adder is located in a chasis with a limiter and pulse ampli-
fier, and is basically an operational type amplifier with multiple inputs
and resistive feedback. The input and output impedances are Seleéted to
give near unity géin, The time mark impedance is adjusted to give a
darker trace for easy identification. The first two stages are cathode-
coupled with the second stage having a grid blas which can be used to
null the output when no input is present. -

Once the input impedances are balanced, the same input jaéks are'n
used for the same signals since the relative magnitude of the pulses
from the phése and ‘amplitude units differs only slightly. The output

voltage is then a function of the input voltages:

3 e
e = 2 z : i
o o 7.
Zy
i=1

The other circuits in the Adder unit are: a limiter, two stages
of gain, and a cathode follower whose output is a series of negative
pulses. As the phase and amplitude of the received signals vary, the
pulses will show displacement in time with respect to the trigger pulse.
In some instances, two and even three pulses could be superimposed. The
limiter is adjusted to simply dip off the top of a single pulse; then
superimposed pulses do not give an output of greater intensity. Since
_several volts are required to properly modulate the intensity of the
oscilloscope beam, two stages of gain follow the limiter. A pot provides

adjustment to the right level. The summed, limited, and amplified
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negative pulses are then fed out through a cathode follower to the CRT

cathode of the oscilloscope. (See Figures 34 and 35.)

3.3.6 The Oscilloscope

A Tektronix Model 532 is used, and is set to sweep 250 times per
second, using an external trigger from the Phase Mark Generator. The
ground discommected from the CRT cathode at the back of the scope and
the output of the Adder is then fed into this point. The sweep is fed
out to Amp Unit 1 where it is reduced and used in the generation of
pulses from Amp 1 and 2 as well as the time units. The sweep is also
fed to external sweep where it is alternated t& produce a narrower
sweep on the screen (one that can be fully photographed).

It is possible for a full sweep of the scope to show five dots
on the screen. ‘At the left edge is a dot coincident with the 250 Hz
trigger pulse. (Other modes of operation can be used.) Two other
dots are present, spaced apart by one-half sweep, and showing the rela-
tive position of the 500 Hz zero crossings. Also present is a dot
representing the amplitude of the 250 Hz and the 500 Hz signals. On
alternate seconds, spaced two seconds apart, a time mark will appear at
the right edge of the sweep. All dots except the trigger and time marks
dots show lateral displacement with time when the satellite signal

scintillates in phase and amplitude.



Ieppy 'y oandtd

3001
O——AM——C
) 4 \ & @ o
Nt
\ WS13 422
(=) > < . P4 A
= wa s We b 3 X4 WL
1 B ) —_
3ee
| S— )
PA A *¥00!
BE
i L s s o
Wi YOOl
302l %022 m
@Ay
% 00l
R "

oGl + 3¥00!



-111-

1ot37Tduy aeddrry °g¢ @andyd

\’
10d VA
AGL .
- gvost T 089
T 0S! .
S @
<
4 08I —— /
Livel =
anve
— ® [
| ]
gz . gy
3Ly %8I
¥iv 3




-112~

3.3.7 The Camera

A Cossor 35 mm camera is used to photographically record the time-
varying display on the oscilloscope screen. The integration effect of
the film results in as many as five lines if the trigger on the left
edge of the scope face is included. The camera motor is set to drive
the film at a rate of one inch per second, which provides film records
with scales convenient to project for processing.

The projection of one second of film run is shown in Figure 36
For this case, the amplitude is for the 20 MHz signal. The phase is the
relative phase between the 20 and 40 MHz signals received at the same
point, and the full scale mark is 27 radians in phase. Only oﬁe rela~-
tive phase track is shown here, Full scale yields two traces for the

40 MHz (250 cps) signal.

3.4 The Simultaneous Records Obtained

The baseline antenna system described inm the previous section is
used to receilve satellite signals which are recorded and then processed
to produce simultaneous phase and amplitude patterns. The 20 MHz and 40
MHz signals from both ends of the baseline are converted to audio of 250
Hz and 500 Hz, respectively, before belng recorded on four channels of
an Ampex recorder. The two records from signals received at one end of
the baseline can be used to generate three patterns. When the two audip
signals are fed to the amplitude units described in Section 3.3.3, simul-
taneous amplitude diffraction patterns are produced in film records. If

the same signals are fed into the phase mark generator unit described in
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Section 3.3.2, a phase diffraction pattern is produced from their rela-
tive phase. These three simultaneous diffraction patﬁerps can be
recorded on the same film for comparision and analysis.

When the total of four signals received at both ends of the base-
line are taken together, several diffraction patterns can be produced:
two amplitude patterns and one. relative phase difference pattern across
the baseline. The 20 MHz signal was used for this interferometer pat-
tern. One of the 250 Hz signals from the recorder was first doubled so
that the same equipment could be used for generating phase marks, One

satellite pass then produces seven patterns for comparison and analysis,
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CHAPTER 4 METHODS OF DATA ANALYSIS

The analysis of the phase and amplitude records detailed herein
permits comparison of the recorded phase and amplitude diffraction pat-
terns with those calculated using the theoretical phase—modulafing
screens. The modifications produced by geometry and method of measure-~
ment, discussed in Section 2.7, have been considered. The various dif-
fraction patterns obtained using the equipment described in Chapter 3
were sampled at uniform intervals, and the resulting data points were:
used as input arrays to two different Fourier analysis computer programs.,
The closeness with which these programs represented the harmonic content
of the input functions was determined by use of a number of sample in-
put arrays for which the Fourier spectra were known.

When the‘spectra for the phase and amplitude patterns measured
at the Earth's surface were determined, they were projected back to the
height of the screen where they originated. This was based on the
assumption that the phase and amplitude patterns had the same origin.
The differences of the Fourier spectra of the pattens projected back
to an incremented screen height were then minimized in a lease-squares

manner.

4.1 Fourier Analysis of Records

All the theoretical phase-modulating screens developed in
Chapter 2 could be represented, with small error, by a finite number
of Fourier components. To compare the theoretical diffraction patterns
these screens produce with the diffraction patterng recorded during

satellite passes, two computer programs were written and used to process
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the data. One program computes the autocovariance function of a data
sample and takes its cosine transform to obtain the power spectral den-
sity. The other program calculates the Fourier coefficients for a seg-
ment of the data sample assuming that the sample represents one period
of a repetitive function. In each case, the d.c. value is extracted
first, but the a.c. and d.c. powers and their ratios are obtained as
part of the program output.

The use of two different programs was‘dictated by the concept
that the real diffraction patterns to be processed were neither deter—
ministic or random, but contained a measure of each. It is known that
any inter§a1 of any function can be renresented by a Fourier series
expanded in terms which are harmonic within its length. When the func-
tion is orderly, this series may indicate the presence of relatively
strong quasi-periodic terms, although the precise distributions of
coefficients is sensitive to the particular end points and how they
relate to these periodicities. In the more general case of a random
function, the Fourier series coefficients are not a good indication of
the distribution of spectral power and an approach based on the auto-
.covariance function may be used.

As indicated, the use of two programs enables consideration of
both periodic and random time functions. The basic tool for analysis
of functions, which are principally periodic, is the Fourier series
program, The tool for analysis of the random functions is the auto-
covariance and spectral density program. The Fourier analysis theory
used to develop the simulation program is widely k;own and is discussed

only briefly.
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.4.1.1. Harmonic Analysis Using Fourier Series
If £(t) is an arbitrary real function in the interval

t, <t j_tz s 1t may invariably be represented by a Fourier series:

1
[»]
_.a -
£(t) = E_Q_ + E (an cos n wyt + bn sin n mot) (4-1)
n=1
where t2 - t1 = T and wOT = 2%

The Fourier coefficients, a and bn s of 4-1 are defined by:

a, = %; f(t) cos n wyt dt , n=20,1,2 (4-2)
and
T
b= 2 jf £(t) sinn wjt dt , n =0, 1, 2 (4-3)
T
0

The Fourler series program gave as an output a normalized value for

»  where:
n 1/2

_f.. 2 2
Cn. ={ 2, + bn
2
The array for the values cn was divided through by its largest member to
obtain the normalized array of Fourier coefficients,
Using this program, the input which is a sampling of a diffractim

pattern, is treated as one period of a periodic function. The program

then maps the significant terms from the time domain into the frequency
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domain. Care must be taken in selection of a sampling procedure so
that the program output will represent the spectrum of the function
being sampled.

Among the errors that must be considered are round-off, frunca-
tion, and aliasing errors. The round-off errors were minimized by sampl-
ing using three significant figures; the truncation errors were mini-
mized by sampling long enough to represent full periods of the lowest
frequencies present. The aliasing errors occur when the high frequency
components of a time function impersonate low frequencies, which results
when the sampling rate is too low. This error was removed by making
certain that the sampling rate was high enough for the highest signifi-
cant frequency to be sampled at least twice during each cycle. Because
of these considerations, most of the computer runs were made using in-
put arrays which covered sections of five to ten seconds of diffraction
patterns which were sampled at the rate of 20 per second.

The Fourier coefficient program written to obtain a s bn’ and
c, 8ave as additional outputs the mean, variance, and ratio of a.c. to
-d.c. power for the input arrays. The program was checked using a number
of input arrays obtained by sampling analytic functions. The output
Fourier spectrum calculated by the computer program was then compared
with the spectrum known to represent the analytic function. The output
of this Fourier amplitude coefficient program was found to give a very
good representation of the expected spectrum; this was true even for

harmonic components which had very little amplitude.
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4.1.2. Harmonic Analysis Using Power Spectral Density

Assume that £(t) is the periodic function represented by é4-1.
Then the power spectrum may be obtained from the Fourier‘cosine trans-
form of the autocovariance function. The autocovafiance function oper-
ates on f(t) - u where u 1is the mean value of f(t) over the inter-
val T . If the time average of the periodic func;ion £(t) over a

period is zero, then the autocovariance, wf is deflned as:

t

tpf(-r) = % [ £(t) £(t - 1)dt (4-6)

"1

where 0 <1 <T, and t t, are the limits of the sample being

1°2 2
analyzed. -

If a function, y(t) , has a time average y(t) , then the sub-
stitution f£(t) - y(t) - y(t) is made in 4-6 and the autocovariance

of the function y(t) Dbecomes:

ty t 2
lby(r) = %f y(t) y(t + 1)dt - % / y(t)dt (4~7)
£ Tty

For either case, the power spectral density, ¢ , is given by the

Fourier cosine transform of (1) :
T

d)(nw'O) = —,]13— / ¥(1) cos n wy T dt (4-8)
-0

where a finite portion of the record is analyzed by applying a unity

amplitude data window of length, ¢t .
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Here the term power spectral density is used in contrast to the power

spectrum of Section 4.1.1. The power spectrum is assééiated with the
Fourier seties method, and has a discrete or line spectrum corresponding
to the values of n . The power spectral density given by 4-13 is also’
a line spectrum. However these spectra are equivalent only when the
function being analyzed is periodic in the sample interval with zero mean.

If samples are taken over the time interval, T , and the corre-
lation shift is for T = T , the required total data sample is 2T. This
means that the lowest frequency which can be represented in the output is
1/2 T . - The highest frequency which can be represented is still the re-
ciprocal of twice the sampling interval, Thus, twice as much data is
handled and twice as many frequencies are available than for the Fourier
series methods‘of 4,1.1.

A correlation and power spectral density program was written to
process the diffraction pattern records. This program also can be used
to obtain cross-correlation functions and cross-power-density spectra.
The correlation functions calculated by this program are the normalized
autocovariance and cross-covariance functions. When the power spectral
densities are developed, they ;re normalized since the relative power
distribution is considered to be most important for diffraction pattern
analysis, The mean value, variance, and ratio of ac to dc power are also
calculated for each input array.

As mentioned previously, the fact that the input sample is taken
over a finite time causes fhe input to be multiplied by a unity data

window of length T . The corresponding convolution in the frequency
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domain results in the spectrum being blurred by Sin X/xX-shaped pulses.
The "leakage' of the power of a given frequency through the side lobes
of the shaping function can be reduced by applying a data window to the
time series which has lower sidelobes in the frequency domain than the
rectangular data window. The spectral density program uses a hamming

lag window to suppress spurious frequency components.[17]

4.1.3. Comparison of Records
The amplitude patterns genetated by the simultaneous film

display are sampled for obtaining a computer program input array by pro-
jecting them on a reader. The phase records, ¥(20-40) , show a very
slow perilodic behavior as the integrated electron content from satellite
to the receiver varies. This ramp must be removed before the computer
inputs are acceptable, which is accomplished by fitting a constant slope
through the total sample to be used. The first and last values are
made to correspond by subtracting their difference. A scaled amount
is then subtracted from each intermediate value. Amplitude and phase
records similar to those sampled for the computer programs are shown
in Figures 37 and 38.

Since an attempt is made to treat the records as periodic
functions, the last sample taken from the diffraction record usually
is one with a magnitude approximately equal to that of the first sample.
The sampling interval selected then is one which eliminates a step
function between the first and last samples. If the time function

selected were discontinuous between these two points, a truncation
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error would result that could not be eliminated by increasing the
number of samples taken. In fact, this Gibb's phenomenon error will
become more pronounced as the sampling rate is increase. In additien
to this magnitude match, a rough attempt is made to match the siopes at
the first and last sample points,

The relationships shown to exist between the theoretical phase
and amplitude diffraction patterns of Chapter 2 are observed in the
measured patterns. First, the large phase eicursions always occur in
conjunction with amplitude nulls; in some cases the phase excursions
are in the ((20-40) pattern; in other cases they are in the ¢(20-20)
patterns. Second, the nulls in the amplitude patterns are sharper than
the peaks; for phase, which is not an absolute wvalue function, notches
in either direction have equal sharpness. It is worth noting here that,
when a transmitted wave is disturbed by phase modulation in a purely
random fashion, rapid excursions for an increase or decrease of ampli-
tude are equally likely. The third significant characteristic for
comparison is that the ¢(20-40) diffraction pattern contains spatial
frequencies lower than those of the amplitude patterns, while the
¥(20-20) . pattern contains relatively more high frequency terms than the
amplitude pattern. The differences can be accounted for. The low
frequency terms of the $(20-40) pattern do not have enough distance,
Z , for developing in the amplitude pattern. The ¢I(20‘20) basgline
interferometer filters out the low frequency terms because of its

length.
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The normalized autocovariance functions calculated for the
simultaneous patterns shown in Figure 37 are presented in Figures 39
and 40, and were calculated using the Power Spectral Density program.
The low frequency terms in ¢(20-40) are shown by the slow fall-off of
the autocovariance function. The amplitude correlation function is
shown as calculated for two runs having a slightly different time inter-
val, These plots demonstrate the repeatability of the process of gen-
erating film records, projecting, and sampling for the computer program.
The normalized autocovariance function for the interferometer phase,
¥(20-20) shows the high frequency terms and the rapid drop-off near d.c.
This correlation function is indicative of a random process. The other
autocovariance function on Figures 39 and 40 is typical of a more deter-
ministic function. Figures 41 and 42 show the normalized power demsity
spectrums Which'result from the cosine transforms of the functions of
Figures 39 and 40. Again, the repeatability in the amplitude spectrum
is observed. Most of the energy is in the low frequency terms for
¥ (20-40) , ¢1(20—20) has a more random spectrum with an average power
of only one tenth of that for ¢(20-40) .

Figures 43 and 44 show the normalized amplitude spectrums which
result when the same diffraction records are processed using the Fourier
coefficiant program. A comparison of Figures 41 and 42 with 43 and 44
reveals that the Fourier coefficient program is more semsitive for locat-
ing regions of the spectrum where no energy exists, and the rapid drop-
off for narrow spectra. It is apparent that a more random spectrum

exists when the baseline filter for wI(ZO—ZO) eliminates the low
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spatial frequency components. However, the amplitude spectrum énd the
¥(20-40) spectrum show that significant energy exists at only a few
frequencies, which indicates that the total spectrum contains a few low
frequency terms having significant energy, plus a randomized wide-band
spectrum which has a lower amplitude. The program behavior is such that,
0 and (K+1)fO , the energy

will be divided between those two frequencies., No loss occurs when Kf0

if energy exists between the frequencies KE£

does not lle directly on the particular line of the spectrum. If the
‘sampling duration is such that if periods are not complete at some fre—
quencies, there will be an extra measure of energy at the lowest fre-
quencies in the spectrum. If high frequency components exist which are
not covered by the sampling rate, they will be reflected around the
highest frequency represented. This is the aliasing error, which is
not considered important except, perhaps, in the ¥(20-20) spectrums,
In Figures 45 and 46 the normalized Fourier amplitude spectrums
are shown for four simultaneous patterns; three are phase patterns and
the other is an amplitude pattern. Here AP and CP are spectrums of the
¥ (20-40) patterns taken at the two ends of the baseline, while BP is
that of the interferometer pattern. AA is the spectrum from the 20 mc
pattern measured at the same end of the baseline where AP was measured.
It is observed that all the phase patterns show some L.F. terms when
comparison is made with the amplitude pati:ernse L.F. patterns do not
develop as fast in amplitude as they do in phase. The interferometexr
pattern spectrum again shows relatively more energy at the higher fre~

.

quencies when comparison is made with the $(20-40) patterns.
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In Figures 47 and 48, all the spectra came from amplitude pat-
terns; a 20 MHz and a 40 MHz pattern were measured at each end of the
baseline. For this data sample, differences in patterns across the
baseline are not as significant as differences in patterns between the
frequencies measured at the same point. Also, the 40 MHz patterns show
relatively more energy at the higher spectral frequencies. The theory
of Chapter 2 shows how the pattérns of the smaller scales develop
faster. Thus, it is possible for the higher frequency terms to be more
important at 40 MHz than at 20 MHz. It is noted that all of these
spectrums are about 4.5 Hz wide if the bandwidth is defined as the fre-
quency extent at which the amplitude fells off.to 10 percent of maximum.
The main differences in the spectra are in the distribution over this

bandwidth.

4,2 Obtaining the Fourier Spectra at the Screen

The Fourier spectra which were discussed in Section 4.1 are
those which represent the phase and amplitude diffraction patterns ob-
served at the receiving stations. It has been assumed that the patterns
have the same origih and each term in the angular spectrum is produced
by a corresponding spatial frequency in the phase-modulating screen.
This is equivalent to assuming that the screen is sufficiently weakly
modulating that harmonic components in the angular spectrum (which can
correspond to apparently amplitude modulating spatial periodicites) are
not significantly large. Thus, if the patterns are transferred back to
the screen using the appropriate propagation functions, each pattern

should yield essentially the same function for representing the screen.
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These similar screens would then have the same Fourier spectra. The
closeness with which the transferred spectra correspond was investigated
using a computer program which searches for a minimum variation in a
least-squares sense.

The computer program accepted, as input arrays, the normalized
Fourier spectra of-th diffraction patterns which were measured simul-
taneously at one location. These could be a 20 MHz amplitude pattern
and a 40 MHz amplitude pattern or one of the two amplitude patterns and
the differential phase pattern between the 20 MHz and 40 Miz signals;
Each term iﬁ the normalized array was then divided through by its propa-
gation function. Thus, the coefficients C(I) at the screen became:

For the 20 MHz amplitude array--

C(I) = A2(I)/sin (1%0) (4-9)

where A2(I) is the normalized value of the Ith harmonic of the observed
diffraction pattern for the 20 MHz signals, and © is the independent
parameter which expresses the distance from the screen to the point where
the pattern was measured.

For the 40 MHz amplitude array--

2
C(I) = A4(I)/sin (159) (4-10)

where A4(I) is the normalized value of the Ith harmonic of the observed

diffraction pattern for the 40 MHz signals.
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For the 20~40 MHz differential phase array--—

2
C(I) = B24(1)/ [}os 126 —-% cos lié] (4-11)

where B24(I) is the normalized value of the Ith harmonic of the observed
diffraction pattern on‘the phase between the 20 and 40 MHz signals.

.In the simulations, any two of the sbove expressions for which
data was available could be used. Implicit in expressions 4-9 to 4-11
is the assumption that each harmonic propagates as a function of a single
scale size. This assumption is justified in Section 5.2.4. To prevent
large values of C(I) from occurring when the denominators of the above
expressions became small, denominators having wvalues less than 0.1 were
replaced by 0.1. For the first runs, using two arrays, the value of ©
was stepped in increments of 0.5 degrees and continuing to 25,0 degrees;
thié-range in 6 was found to positlon the screen at all heights of
interest within the ionosphere. The index I was varied from 1 to 15
or 1 to 20 depending on the input sﬁectrum. For every value of © ,
the C(I)- were obtained for each of the two input arrays and then were
normalized to the largest member in their array. The sum of the squares
of the differences of the members of the normalized transferred arrays

having the same value of I was then found using the function:

N

s(9) =Z 'lClO(I)

2 (4-12)

lcmml,
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The sums, S(0) , were stored for all @ and then sorted for their
minima. The value of © which produced this minimum was than used in
the appropriate pair from 4-9, 4-10, and 4~11 to obtain the normalized
spectra which represented the screen. To assure that an absolute minima
was obtained, those regions in S(0) were nulls had been observed were
recrossed as © was varied in steps of 0.05 degrees.

For the first harmoniec (I=1) , it was illustrated in Chapter 2

that L, dis related to FZ through o :

1
— \1/2
- 27)\FZ -
Ll (—'—"—O ) (4-13)

Thus when the value of © , in radians, which minimizes 4-9, is in-

serted in 4-13, Ll becomes a function of FZ . The zenith angle and

satellite height of the data sample may be used with the figures of Sec-

tion 2.7 to obtain a plot of L., wversus hI » the screen height.

1

The frequency of the first harmonic in the spectrum, fo )
obtained by processing the records with the methods described in
Section 4.1, was used to obtain another relationship between L1 and

hI . First L1 was expressed as a function of T .

L1 = VS(l - F)/f0 (4-14)

The satellite velocity, VS and the quantity ¥ are known for

each track. Since each value of F corresponds to a3 particular screen

height, h for the particular satellite height and elevation angle

I ®
of the data sample, a plot of L1 versus hI was obtained. An example
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of these two curves and their single crossing is shown in Figure 49;
this is one of the eight cases represented in Table 4. The crossing
point ylelds two values of interest-~the scale size of the first har-
monic and the height of the screen.

Once the scale size of the first harmonic is determined, a scale
size for each term in the spectrum may be obtained. A plot of normal-
ized amplitude of the spectrum at the screen versus scale size is
given in Figure 50. The 60 points used to obtain this composite
figure came from the results of eight simulations for obtaining Fourier

spectra at the screen.
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CHAPTER 5 RESULTS AND CONCLUSIONS

The initial discussion in this chapter consists of a comparison
of the phase and amplitude patterns which develop behind the various
screen models presented in Chapter 2; both the similarities and dif-
ferences in the patterns are noted. Because it has been assumed that
each harmonic in the spectra has an associated weak modulation, the
principle of superposition is evoked to assemble a composite ionospherig
phase-modulating screen that will produce the particular patterns which
were measured at the recelving stations. The Fourier spectra, for
representing the screens obtained by transferring the spectra of the
measured patterns back to the altitude which minimizes their differeuces,
are shown to possess the characteristics of the composite screens.

The results obtained in this study are compared with those of
other investigators. A final section contailns suggestions for future

work.

5.1 A Comparison of Phase and Amplitude Patterns and Their Spectra
When the diffraction patterns which develop behind the theoretical
screens of Chapter 2 are examined, both similarities and differences are
obgsprved. For those screens consisting of more than a single modulatiﬁg
frequency,both the phase and amplitude patterns change with distance
behind the screen. Each component of the Fourier series which represents
the screen propagates as a different function of distance from the screen.
Therefore, the correlation functions of these patterns also depend on,

and change with, the distance from the screen.
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The variation of the magnitude of a single component of(three of
the diffraction patterns measured for this investigation are shown in
Figure 18 as a function of distancg behind a thin screen. These curves
illustrate that, although it is péssible for the same hgrmonic in the
two amplitude patterns to vanish at the same distance from the screen,
there is no distance tﬁat will_cause the simultaneous disappearance of
the same harmonic in either of the two amplitude patterns and the phase
difference patttern. Thus the absence of a particular harmonic in the
two patterns indicates that it was not present in the phase~modulating
screen. ;f phase and amplitude patterns are both measured on the same
transmitted frequency, it is possible for one to be quite evident while

)[15]

the other is agbsent; this was noted by DeBarber (1962 , who us~d a
short 0.152 km baseline for measuring the phase fluctuations on 54 MHz
signals.,

Comparison of the measured phase and amplitude patterns reveals
that the phase patterns usually contained more relative energy in their
low frequency components. This in part is due to the pattern propaga-
tion functions which reduce the amplitude components considerably more
when 27FZ/L is small. Also, when the screen is neither single fre-
quency nor weak, the cross products inherent in the rectification
operations, which yield amplitudes, lead to more energy in the higher
frequency components.

In this investigation amplitude patterns were measured on both

20 and 40 MHz signals. The thoretical work of Chapter 2 reveals that

if ﬁfX/Lz is greater than m for )\ being that of the 20 MHz signal,
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then the 40 MHz amplitude pattern will be shifted so that the nulls in
the patterns will not be coincident. This shift was not observed in
the measured patterns.

When two-dimensional screens are considered, the observed pat-
terns become a function of the direction in which the screen is tra-
versed. When the anomalies are not elongated in a direction normal to
the direction of travel, the amplitude patterns develop in one-half the
distance for the same scale sizes. Each complexity added to the screen
model increases the number of significant Fourier terms required to
properly fepresent the screen and the diffraction patterns that result
behind it. The fact that all of the observed diffraction patterns
could be represented by a few significant Fourier terms shows that
these patterns originated from a relatively simple screen,

Although most of the phase diffraction patterns examined in this
study were the differential phase patterns that exist between two fre-
quencies received at the same point, some phase differences across a
baseline were used. It has been shown, in this case, if the antenna

spacing is the baseline length, b , then this interferometer is din
=2
effect a spatial filter with a pass band whose function is 2 sin ":F

A baseline having a length of one kilometer or less will attenuate
those spatial frequencies which originate from the larger anomalies.
This filter effect accounts for the differences observed in the phdse

pattetns measured across the baseline.
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It was shown in Chapter 2 that the single frequency, oné—
dimensional screen is the most effective for producing deep nulls in
the amplitude pattern for ; given peak phase modulation, ¢0 . When
the screen becomes two-dimensional and thick, with the same value of
¢O » not only is the average modulation intensity across the screen re-
duced but the phasing 6f the several diffracted components is such that
fewer nulls are produced. Because the most efficient screen produces
deep notches for ¢O of 0.8 radian or greater, the regular occurrence
of deep notches behind a two-dimensional screen of finite thickness in-
dicates that the screen has a peak modulation of more than one radian.
This has béen observed for most.of the vecords processed.

5.2 Ionospheric Screen Requirements for Producing the Observed

Diffraction Patterns

In this section the characteristics of the diffraction patterns
which developed behind the theoretical screens of Chapter 2 are used to
speclify some of the parameters of a real ionospheric screen. The cri-
terion used is that the specified screens produce, when the geomefric
relationships of Section 2.7 are considered, the phase and amplitude

patterns which have been recorded and analyzed.

5.2.1 The Magnitude of the Peak Phase Modulation
Using the scintillation index, S , as a measure, the peak phase
modulation at the screen is found to be slightly larger than one radian

for the samples that were processed. The scintillation index has been
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f18]

used in previous studies to indicate the magnitude of the fluc-
tuations on received radio frequency signals. The recorded amplitudes
are scaled by using the relationship:

g = Max signal - Min signal (5-1)
Max Signal + Min signal

As the fluctuation level is to be determined over the sample
duration, for consistency in reduction of records, the third peak down
is used for the makimum signal and the third null up for the minimum
signal; the sample period should contain at least ten changes from
maximum to minimum. When all the simulation runs made for Chapter 2,
where the peak phase modulation was one radian, were considered, tue
voltage scintillation index, S_ , of the resulting amplitude patterns

v

varied from-0.31 to 0.84. The mean value of SV for the simulations
was 0.46 with one-fourth of the values being above 0.72, Tbis 1eadé to
the conclusion that the peak phase modulation at the screen was greater
than one radian. This was not revealed in any of the previous studies
where the efficient one-dimensional cosine screen of Hewish (1952)[4]
was used as a model for determining the intensity of the phase modula-
tion. It was shown in Chapter 2 that the two-dimensional screen having
finite thickness is less efficlent in generating peaks and nulls, This
inefficiency combines with the strong dependence of the patterns om the
distance from the screen to reduce the scintillation index of the
observed patterns. N

Another parametery of interest for indicating the intensity of

the amplitude scintillations is the ratio of a.c. to d.c. powers. This
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is expressed by 2-77., By plotting S_ against the power ratio, BRA ,

v

a linear relationship was found to exist for these two quantities.

S8y = 0.3+ 2. RA (5-2)

The average value of RA taken over all the amplitude diffraction pat-
terns processed was 0.11; the fluctuating signal power was slightly
greater than 10 percent of the average signal power. When the.theoret-
ical diffraction patterns of Chapter 2 were analyzed, the scintillation
index and RA were shown to be strong functions of the scale size and
the distance from the screen. This indicates that these quantities,
when obtaiﬁed from a single diffraction pattern record, are not suf-

ficient for determining the phase-modulating intemsity of the screen.

5.2.2 The Scale:Size of the Irregularities

This investigation has determined that the scale sizes obtained
for irregularities during processing of the diffraction pattern records
depend on the particular patterns measured and the definition of the
term "scale size." Using the geometrical relationships of Section 2.7,
with the major components in the Fourier coefficient spectra for the
amplitude patterns measured, results in scale size variations of from
0.63 km to 10. km with a mean value of 2.16 km. If the same procedures
are used with the major components in the Fourier spectra of the dif-
ferential phase patterns, Y{(20-40) , which were measured between two
frequencies at the same location, the scale size is found to vary from

2 to 17 km with the mean value being 7 km. When the interferometer
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-records, ¥(20-20b) , taken across the 1.0 km baseline are used in the
same analysis, the scale sizes obtained vary from 0.7 km to 5.8 km,
with a mean value of 1.8 km.

The methods of Section 4.2 transferred patterns back to the
height of the screen where the scale sizes were determined. 1In some
instances, only amplitude patterns were used; in others, differential
phase and amplitude patterns were used together. Figure 50, which is
a plot of normalized amplitude of components at the screen versus scale
size, shows peaks in amplitude at 2, 6, and 12 km. This is in good
agreement with the scale sizes obtained by use of the individual pat-
terns. The presence of large scale sizes are not usually evident in
the amplitude patterns; it is possible for them to appear when the
anomalies are elongated or due to the beats of two or more smaller
scale sizes.

Most of the work previously performed to investigate diffraction
patterns has been based on analysis of amplitude patterns alone. Also,
in most cases the determination of scale size has assumed that the
scale size of the pattern was similar to that of the screen; then a
measure of correlation distance was used to estimate the scale size.

To permit comparison of the findings of this investigation with those
of other studies, the method of Aarons and Guidice (1966){19] is used
to demonstrate the relationship between scale size and correlation
distance. That investigation used an irregularity scale size, 'LF

(F for Fourier), defined by Lawrence et al (1964 as the reciprocal

of the wave number of the dominant terms in the Fouriler anélysis of the
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irregularity distributions. It is 27 times greater than thé auto-
correlation distance,'l.c (c for correlation) for a single frequency
screen., If this relationship i1s used to find Lc for the diffraction
patterns measured and analyzed for this investigation, then a mean Lc
is obtained of 0.34 km for the amplitude patterns, 1.11 km for the dif-
ferential phase patterns, and 0.29 km for the phase patterns measured
across the baseline. For investigations usiug autocorrelatién func-
tions and the assumption of a Gaussian distribution for the phase

[15]

modulation » 1f the falloff to 0.606 is asserted to correspond to
the.corre;ation distance, then LF is 6.8 times greater than Lc .
Another important considération for scale size determination is
whether the radiating source is a satellite or a radio star. Wher
tracks are made at low elevations, the geometry of satellite measure-
ments reduces the value of FZ to about one half of Z ; the amplitude
patterns produced by the larger scale sizes do not have distance in
which to develop. For this reason, those investigations which used

radio stars at elevation angles not near the zenith should obtain

. This held true for Hewish (1952)[4], who found
1
)[ 9]

larger values for LF

LF to be 3 to 7 km, and Aarons and Guidice (1966

7 km for LF . These values correspond closely to those obtained in

, who obtained

this investigation where the phase difference patterns, $(20-40) ,
were analyzed.

Having examined and analyzed the several types .of diffraction
patterns measured, it was éoncluded that the phase-modulating screens

contain scale sizes from less than 1 km to greater tham 15 km. The low
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frequency terms which result from the large scale sizes contain the most
phase modulation but are not much in evidence when amplitude or baseline
interferometer patterns are measured. Superimposed on this structure of
scale sizes, which results in a small number of Fourier terms for the
spectra, is a certain amount of randomness which derives from a larger
number of small scale size irregularities.

It is worth noting here how dissimilar the spectra obtained for
representing the screens are when compared with the spectra of time
functions»from more random phenomena. The speétra for the screens have,
on the average, 7.6 harmonics in the flrst 15 spectra with normalized
amplitudes larger than 0.2; the‘bandwidth was 51 percent achieved for
this threshold.  In each case, the first harmonic was the largest ele-
ment. When a number of samples of the radar amplitude function from 20
randomly spinning metallic reflectors, plus a steady component, were
analyzed, they were found to produce 13 harmonics in the first 15 of
their Fourier spectra with normalized amplitudes greater than 0.2; the
bandwidth was 87 percent achieved. Also, the position of the harmonic
in the normalized spectra which had the maximum amplitude varied from
the first to the fourteenth with the average being the seventh harmonic.
The Fourier series spectra which result when random phenomena are
sampled are wide-band with the larger element taking any position in
the bandwidth with equal probability. The spectra obtained for repre-
senting this spatial modulation across the ionospheric. screens were

narrow band and ordered such that the first harmonic was the largest.
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5.2.3 The Height Distribution of the Anomalies

All past investigations of F-region anomalies appear to agree
that the screen height should lie between the altitudes of 250 and 600
km. The values for height obtained by use of various methods did not
show dependence on the frequency transmitted, the patterns used, or the
method used. There is reason fpr not obtaining a precise height deter-
mination through examination of the patterns. For example, in this
study when the satellite was near zenith at a height of 1,000 km, the
FZ term, which is the variable in pattern propagation when scaie size
is a constant, increases by only 28 percent as the ionospheric height
is increased from 250 to 600 km. The <ffect is even less at larger
zenith angles. If anomalies have scale sizes which produce maximuz
intensity amplitude patterns when they are positioned at an altitude
of 600 km, they will produce 0.90 of this amplitude when they are
positioned at 250 km. Lowering the satellite height will pfoduce a
larger variation of the patterns as the scale size is moved through
the ionosphere; it also will reduce the contributions of all large
scale sizes.

Two methods were used in this study to obtain the height of the
ianSpheric phase-modulating screens. First it was observed in Chapter
2 that, when (0 = ZﬁXfZ/LZ) is larger than w1 for the 20 MHz trans-
mission, the nulls in the 20 MHz and the 40 MHz amplitude patterns
would not occur at the same time. In the measured patterns the nulls
occurred together; thus © must be assumed to be }ess than =« . If

the mean value for Li , obtained for the cases when simultaneous
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amplitude patterns were measured, 2.55 km is inserted in the express-—
ion for ©O<n’, and Figures 15 through 17 of Section 2.7 are used, it

is found that the ionospheric height, h for the screen varies from

i 3
250 km to less than 400 km.

The second method for height determination, discussed in Section
4.2, involves transferring the ﬁeasured spectra back to a height which
minimizes their differences when the appropriate propagation factors
are used. This method resulted in a height vafiation for the screens
of from 250 to 390 km, with the mean value of 300 km (see Table 4). It
was conclu&ed thatvthe screen heights vary from 250 to about 400 km
with the mean value near 300 km. These values are in general less than

)[15] from 330 to 540 km but in good

those obtained by DeBarber (1962
agreement with those given by Yerkhimore (1962)[21]——270 to 350 km.

The position of the observed anomalies with respect to the
height of maximum ionization, and the excess ionization of the large
anomalies, corresponds to the predictions of the theory of Martyn
(1959)[29]. However, patches of excess ionization in the same position

and time frame could be obtained using other theories for irregularity

formation.

5.2.4 The Composite Screen

The conclusions of Sections 5.2.1 through 5.2.3 are combined to
specify phase-modulating screens which agree with the theory of Chapter
2 and which are capable of producing phase and amplitude diffraction
patterns similar to those measured. The mean height of the ionospheric

screen will vary from 250 to 400 km, with the most likely value being
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Table 4

Height of the Irregularities

Run No. Type of Spectra Height (km)
1 Amp-Amp 280
2 Amp-Amp 390
3 Amp-Amp 300
4 Amp~Phase 325
5 Amp-Phase 310
6 Amp?Phase 250
7 Amp-Phase 295

8 Amp-Phase 265
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about 300 km. Because the dominant terms in the patterns change only
sightly fdr small variations in screen height, the screen thickness is
difficult to determine. The calculations described in Section 4.2
indicate that the séreen thickness should be less than 100 km.

The total peak phase modulation in most cases is greater than
one radian, which is divided among scale sizes ranging from 15 km down
to 1 km. This upper limit on scale size is determined by the sample
length. The structure of the screen is such that smaller blobs are
superimposed on or imbedded in the larger blobs. The large blobs pro-
duce the greatest variation in phase; the variances of the (20~40)
differential phase patterns were ten times as large as those for the
¥(20-20b) dinterferometer phaée patterns across the baseline. It is
interesting to note that the scale sizes between 4 to 8 km have less
phase modulation than did those which were larger or smaller., The weak
modulation associlated with the small scale sizes prevents large scatter-
ing angles, which validates the assumptions of Section 2.7.1, whereby
the region of the screen which can contribute to the pattern at a
point is no more than a scale size in extent. The larger scale sizes
have not been observed in investigations where the amplitude patterns
aione were used. - This is particularly true where satellites were used
as radiation sources. The theory of Chapter 2 shows that when the
anomalies are elongated the small scale size controls the propagation
factor for the pattern, while the direction of travel .of the satellite
across the screen controls.the scale size observed. Because the larger

scale sizes were for the most part not seen in the amplitude patterns,
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the anomalies appeared not to be elongated; this was the conciusions of
Titheridge (1966)[22]; However, the records were all taken when the
satellite was to the north of the receiving stations where the magnetic
field geometry is such that this direction of travel of the satellite
is nearly across the small (transverse) axis of the anomalies.. For
this reason, the presence of elongated anomalies would not be detected.
Because of this particular ray path magnetic field geometry, the pro-
cedure of Section 4.2, which assumes that each harmonic in the pattern
propagated as a function of a single scale size, are justified.

The larger blobs comprising the bulk of the modulation could
result from a number of smaller blobs which merged by diffusion but
which retained some of the small scale characteristics in their electron
density gradients., This postulated configuration acquires credence by
virtue of the fact that patches of scintillation have been noted[s],
and large scale anomalies have been observed to drift while retaining

1

their identity. Stewart and Thitheridge (1966)[24 observed patches

with horizontal dimensions from 75 to 520 km. Large scale irregular-

ities also were studied by Chisholm (1961)[24]

who gave 38 km to 117 km
as their horizontal dimensions. Since the configurations of anomalies
are not truly symmetrical, they produce diffraction patterns which con-
tain a measure of random variation in addition to the finite number of
Fourier terms representing the bulk of the modulation. This random
variation is represented by a larger number of small amplitude Fourier
terms., When the pattern pfoduced by the screen is sampled for longer

o

times, the resulting Fourier spectra contain a larger contribution due
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to the randomness in the size and spacing of the anomalies. This
situation is more likely to occur when radio stars are used as a
radiating source. In this study; the sampling techniques were selected
to avoid magnifying the apparent randommess of the screens. This was
accomplished by sampling over a time consisting of one or more complete

periods of record fluctuation.

5.3. Comparison With Previous Investigatipns

Previous investigations used Fourier analysis to determine the
scale size of the lonospheric irregularities, Gruber (1961)[25] used
the radio star Cygnus A and tracked on frequencies of 50 and 200 MHz.
In that investigation, measurements were made across the baseline or
400 meters in length, The phase differences and the sum of the ampli-
tude fluctuations were used for records, and during processing, the
autocorrelation function and power density spectra were determined.
The usual assumptions were used of the scattering being a random process
and the one-to-one relationship between the spatial autocorrelation
function of the phase-modulating screen and the fluctuations observed
at the ground. The investigation determined the spectra for phase and
amplitude to be somewhat similar although the spectra were not a con-
tinuum but consisted of discrete frequency components. The analysis of
Chapter 2 shows that the short baseline used would filter out the lar-
ger scale sizes in the phase pattern. Although the data-handling pro-
cedure is one which tends to smooth the spectra, it _doés not suppress

the discrete harmonic components.
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)[26] also used the radio

An investigation by Lansinger (1966
star Cygnus A. Both phase and amplitude spectra were obtained using
the autocorrelation functions and power density approach; they were
found to be somewhat different eveﬁ though the durations of the data
samples were from 1.5 to 2.0 hours. At times, the statistics for the
amplitude and angular scintillations showed dependence; this is_possible
since the statistics are not time functions. This condition suggested
that the ionospheric screen model consisted of non-random ionizations
which produced an ordered structure in the ground diffraction patterns.
As the only screen motions are due to Earth's rotation aﬁd ionospheric
drifts, the important frequency components in the spectra have fre—
quencies which are an order of magnitude smaller than those resulting
from satellite tracks. The continuous alterations in size and electron
density of the individual anomalies give them a more random appearance;
if the patterns are somewhat ordered for radio star tracks they should
be even more ordered for satellite tracks.

Another investigation using power spectra, made by Jesperson

and Kamas (1964)[27]

, used the scintillation on satellite signals of

54 and 150 MHz, and again found that the spectra are composed primarily
of several discrete components and that on no occasion was there a con-
tinuous distribution of frequencies. The upper frequencies were all
less than 3 Hz. This investigation, which uses the frequencies of 20
and 40 MHz and both phase and amplitude diffraction patterns confirms

the observations of Jesperson and Kamas., For the theory of Chapter 2

and the data processing procedure of Chapter 4, both investigations
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indicate that: (1) the spectra consist of a few important components,
and (2) amplitude patterns on two different transmitted" frequencies,
measured simultaneously at the same location, will not have the same
ordering of their important components. In addition, the phase pat-
terns may contain other quite significant terms.

Another scintillation study which warrants note is that of Allen,
Aarons and Whitney (1964)[28], which analyzed the amplitude difffaction
patterns that developed on the transmissions from both radio stars
Cygnua A and Cossiopeia A and satellites. When their measurements were
compared with the random scattering anclysis of Briggs and Pa?kiﬁ
(1963)[9], inconsistencies were revealed. First, the mean frequency
dependence in the region between 30 and 63 MHz was less than inverse
linear. (The geometrical developments of Section 2.7 show this could
occur only in a particular range of the independent variable © .)
Also, this study stated that it was not unusual for amplitudé scintil-
lation to decrease with decreasing frequency, even in the higher H. F,
reglon, during intense storms. This would occur, as shown in Section
2,7, if the ratio FZA/LZ is approximately equal to 0.5 for the lowest
frequency. Finally, the study concluded that multifrequency observa-
tions have shown that, when satellite beacon frequencies are used, it
is usually not possible to find a direct correspondence between the
shadow pattern on the ground and the irregularity pattern in the iono-
sphere, The theory of Chapter 2 shows that the only time a phasé or
amplitude diffraction pattern behind a screen is siﬁilar to the spatial
distribution along the screen is when the screen can be represented by

a single spatial frequency.



-161-

5.4 Suggestions for Further Work

The analysis involving the geometrical considerations in Chapter
2 showed that for an interferometer system the baseline length deter-
mined which of the screen scale sizes would be enhanced. A variable
baseline system should be constructed such that a number of interfero-
meter diffraction patterns could be'generated for each satellite pass.
These patterns then should be compared with the amplitude pattérns
measured at the same frequency. According‘to the theory of Chapter 2,
the same spatial frequencies cannot be dominant in both the amplitudé
and phase patterns; however, for certain baseline lengths the spectra
would be ﬁore similar.

Additional patterns to those treated in this study could be
obtained from the same baseline, For example, ¢(40-40) interfero-
meter patterns as well as harmonic frequency, ¥(20-40) interfero-
meter patterns would be of interest. A short baseline couldAbe used
to collect data on the small random scatters during the same satellite
pass when the other patterns are being used to evaluate the nature of
the discrete anomalies. Similarly, a comparison of the 40 MHz and 20
MHz amplitude patterns could be made to determine if the latter is
more random. Since a larger area of the screen contributes to this
pattern, it should contain a greater measure of randomness.

It has been observed, as expected, that records obtained from
radio star tracks show a larger scale size. If possible, it would be
of interest to have radio star tracks for the same time and region of

space over which satellite data is available. The'amplitude patterns
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of satellite signals increase with FZ while the radio star pattern
gorws with Z alone. Accordingly, the tracks of two different satel-
lites would be useful. If one had a height of 400 km and the other had
a height of 1,00 km, their diffraction patterns should be quite dif-
ferent. Also, a detailed eiamipation could be made of the spectra
from two amplitude patterns measured on frequencies separated by more

than 20 and 40 MHz.

5.5 Conclusions

In conclusion, it is worth noting that the success of this
investigation in answering a number of questions posed in previous
studies is primarily due to limitation of restricting assumptions in
formulation of the problem to be addressed., The intent of this inves-
tigation was to ﬁeasure a number of diffraction patterns and then to
match their spectra using the theoretical phase~modulating screens as
models. A gaussian distribution was not used as a model for the
irregular phase modulation; the anomalies were not put in the far
field or within the first Fresnel zone. The assumptions were that:
(1) the angular spectrum-electric field transforms could be used;
(2) the scattering was sufficiently weak for the diffraction theory
to hold and for the principle of superposition to be used; and (3)
the region in the screen producing the modulation could be represented
by a two-dimensional spatial Fourier series. The solution of the pro-
blem was thus kept as ggneral as possible until thé parameters which

define the screens were to be determined. This non-restrictive
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philosophy also was followed in selection of the methods for harmonic
analysis; the computer programs and sampling techniques finally selected
were those which gave the best spectral representation for the sample

inputs used to test the programs.
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